scholarly journals Coupling Human and Natural Systems for Sustainability: Experiences from China’s Loess Plateau

2022 ◽  
Author(s):  
Bojie Fu ◽  
Xutong Wu ◽  
Zhuangzhuang Wang ◽  
Xilin Wu ◽  
Shuai Wang

Abstract. Addressing the sustainability challenges facing humanity in the Anthropocene requires the coupling of human and natural systems, rather than their separate treatment. To understand the dynamics of a coupled human and natural system (CHANS) and promote its sustainability, we proposed a conceptual cascade framework of “Pattern-Process-Service-Sustainability”. The use of this framework was systematically illustrated by a review of CHANS research experiences in China’s Loess Plateau (LP) in terms of coupling landscape patterns and ecological processes, linking ecological processes to services, and promoting social-ecological sustainability. The LP is well-known for its historically notorious soil erosion and successful vegetation restoration achieved in recent decades. Vegetation coverage in the LP has increased since 2000 due to ecological restoration. Soil erosion has been well controlled and the sediment deriving from the LP, and flowing into the Yellow River, has greatly decreased; however, overplanting, the introduction of exotic plant species, and the mismanagement of planted vegetation have also led to soil drying in some areas. Ecosystem services, especially for soil conservation and carbon sequestration, have significantly improved, although a trade-off between carbon sequestration and water supply has been identified at multiple scales. Based on the comprehensive understanding of CHANS dynamics, targeted policy and management suggestions are here proposed to support the social-ecological sustainability of the LP. The research experience accumulated on the LP offers examples of the application of the “Pattern-Process-Service-Sustainability” framework. Future research using this framework should especially examine the integrated research of multiple processes, the cascades of ecosystem structure, function, services, and human-wellbeing, the feedback mechanisms of human and natural systems, and the data and models for sustainability.

2021 ◽  
Vol 13 (5) ◽  
pp. 2593
Author(s):  
María Fe Schmitz ◽  
Cristina Herrero-Jáuregui

Cultural landscapes are the result of social–ecological processes that have co-evolved throughout history, shaping high-value sustainable systems [...]


2021 ◽  
Author(s):  
Yongyong Ma ◽  
Zhanbin Li ◽  
Jingming Hou ◽  
Peng Li ◽  
Zongping Ren ◽  
...  

<p>In recent years, the significantly decrease of water and sediment in the Yellow River has attracted wide attention from domestic and foreign scholars. The Loess Plateau is the main source of sediment in the Yellow River, which ecological environment changes caused by large-scale ecological construction measures is considered as one of the main factors affecting the water and sediment changes in the Yellow River. In this study, the Wangmaogou small watershed in Loess Plateau was taken as the study area. On the basis of summing up the process of ecological construction in Wangmaogou watershed, and restoring the topography before ecological construction by topographic map, we set up four scenarios of ecological construction to analyzed the characteristics of sediment connectivity under different ecological construction scenarios and the effects of ecological construction on sediment connectivity, which are before ecological construction, only slope measures are built, only channel measures are constructed, and at the same time slope measures and channel measures are constructed. Under the same ecological construction scenario, the index of sediment connectivity (IC) of the basin shows a decreasing trend from ridge to gully, which mean the connectivity of the sediment at the ridge is less than that at the gully, and the gully are more prone to occur soil erosion than ridge. The distributed of large amount of construction land in the middle and lower reaches at the main gully of Wangmaogou small watershed reduces the connectivity of their surrounding sediment, and the region is prone to occur sediment deposition. Eco-construction measures have decreased significantly the sediment connectivity index (p<0.01) of Wangmaogou small watershed, and reduced the occurrence of soil erosion. Laying ecological measures lessened the possibility of local soil erosion, and increased the resistance of sediment in the transport process. Compared with the situation without ecological control, the mean of D<sub>up</sub> index decreased by 75.27% by laying slope and gully measures, while the mean of D<sub>up</sub> index decreased by only 6.45% by laying gully measures.</p>


Author(s):  
Xiaofeng WANG ◽  
Feiyan XIAO ◽  
Xiaoming FENG ◽  
Bojie FU ◽  
Zixiang ZHOU ◽  
...  

ABSTRACTSoil conservation on the Loess Plateau is important not only for local residents but also for reducing sediment downstream in the Yellow River. In this paper, we report a decrease in soil erosion from 2000 to 2010 as a result of the ‘Grain for Green' (GFG) Project. By using the Revised Universal Soil Loss Equation and data on land cover, climate and sediment yield, we found that soil erosion decreased from 6579.55tkm–2yr–1 in 2000 to 1986.66tkm–2yr–1 in 2010. During this period, there was a major land cover change from farmland to grassland in response to the GFG. The area of low vegetation coverage with severe erosion decreased dramatically, whereas the area of high vegetation coverage with slight erosion increased. Our study demonstrates that the reduction in soil erosion on the Loess Plateau contributed to the decrease in the sediment concentration in the Yellow River.


2020 ◽  
Author(s):  
Liding Chen

<p>Linking landscape patterns to specific ecological processes has been and will continue to be a key topic in landscape ecology. However, the traditional landscape pattern analysis by landscape metrics inspired by patch-matrix model (PMM) may be difficult to reach such a requirement, and thus landscape pattern analysis to denote the significance of ecological process is strongly hindered. To find conceptual and methodological innovations integrating ecological processes with landscape patterns is important. In this paper, we proposed a conceptual model, i.e., the source-pathway-sink model (SPSM) by defining the role of each landscape unit to a specific process before conducting landscape pattern analysis. The traditional landscape matrices derived from the patch-matrix model is visual- or geometrical-oriented but lack of linkage to ecological significance. The source-pathway-sink model is process-oriented, dynamic, and scale dependent. This model as a complementary to the patch-corridor-matrix model can provide a simple and dynamic perspective on landscape pattern analysis. Based on the SPSM model, a landscape index was developed in term of the process of soil erosion, and further testified by using on-site measurements. It was found the new landscape index based on SPSM is useful in evaluating the risk of soil erosion from landscape pattern at watershed. Finally, a case study was conducted in the loess hilly areas to define the risk area of soil erosion that will be useful for sustainable land use management and optimization in future.</p>


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 529 ◽  
Author(s):  
Chenlu Huang ◽  
Qinke Yang ◽  
Xiayu Cao ◽  
Yuru Li

Soil erosion is a serious environmental problem in the Loess Plateau, China. Therefore, it is important to understand and evaluate soil erosion process in a watershed. In this study, the Chinese Soil Loss Equation (CSLE) is developed to evaluate the soil loss and analyze the impact of land use and slope on soil erosion in Jiuyuangou (JYG) watershed located in the hilly-gullied loess region of China 1970–2015. The results show that the quantities of soil erosion decreased clearly from 1977 to 2015 in the study area, which from 2011 (t/km²·a) in 1977 to 164 (t/km²·a) in 2004 and increased slowly to 320 (t/km²·a) in 2015. No significant soil erosion (<300 t/km²·a) changed in JYG watershed, which increased dramatically from 8.93% to 69.34% during 1977–2015. The area of farmland in this study area has been reduced drastically. Noting that the annual average soil erosion modulus of grassland was also showing a dropped trend from 1977 to 2015. In addition, the study shows that the annual average soil erosion modulus varied with slope gradient and the severe soil erosion often existed in the slope zone above 25°, which accounted for 4657 (t/km²·a) in 1977 and 382.27 (t/km²·a) in 2015. Meanwhile, soil erosion of different land-use types presented the similar changing trend (declined noticeably and then increased slowly) with the change of slope gradient from 1977 to 2015. Combined the investigations of extreme rainfall on 26 July 2015 for JYG watershed, the study provides the scientific support for the implementation of soil and water conservation measures to reduce the soil erosion and simplify Yellow River management procedures.


2011 ◽  
Vol 8 (1) ◽  
pp. 277-303 ◽  
Author(s):  
P. Gao ◽  
X.-M. Mu ◽  
R. Li ◽  
F. Wang

Abstract. Loess Plateau is one of the worst soil erosion regions in the world, which may resulted from various factors such as precipitation, land cover and land use, soil, vegetation, human intervention, as well as solar activities. The purpose of this study is to find the relationship between soil erosion and sunspot activity on the Loess Plateau, through analyses of the sunspot relative number and the long-term sediment discharge series in Longmen station in the Yellow River based on the Morlet wavelet method. In this paper, annual sediment discharge series from 1919–2008 in Longmen station and the sunspot relative number were decomposed with Complex Morlet wavelet. The results of real part, modulus and the second power of modulus showed an obvious periodic variability in sediment discharge, with 25–40 years, about 10 years, and less than 10 years scales. There are six centers of energy. From the wavelet variance, 6, 12, and 35 years periods were detected within 50-year scale, and the 35-year period is the most significant one. Similar analyses were conducted for the sunspot relative number during the same period of 1919–2008. The sunspot series showed an 11-year periodic variation, and two energy center. Then, the correlation analyses for 11-year scale were computed. From a long-term period (1919–2008) view, there is no significant correlation between the sediment discharge and the sunspot relative number; however, it is evident that the correlations exist in short-term periods. The results also indicate that the relationships between solar activities and the erosion of the Loess Plateau are complicated.


Author(s):  
Emily W. B. Russell Southgate

This extensive revision of the first edition of People and the Land Through Time incorporates research over the last two decades to bring the field of historical ecology from an ecological perspective up to date. It emphasizes the use of new sources of data and interdisciplinary data analysis to interpret ecological processes in the past. It describes a diversity of past ecosystems, and how they affect current ecosystem structure and function as well as offering insight into current structure and process, and assisting in predicting the future. This historical perspective highlights the varied and complex roles of indigenous people in historic ecosystems and as well as the importance of past and present climatic fluctuations. The book begins with an introduction to the importance of history for ecological studies, and then has three chapters which explain methods and approaches to reconstructing the past, using both traditional and novel sources of data and analysis. The following five chapters discuss ways people have influenced natural systems, starting with the most primitive, manipulating fire, and proceeding through altering species ranges, hunting and gathering, agriculture and finally structuring landscapes through land surveys, trade and urbanization. Two chapters then deal with diversity, extinction and sustainability in a changing world. The final chapter integrates the rest of the book especially in terms of the importance of history in basic ecological studies, global change and understanding conservation. Throughout, the emphasis is on the potential for evidence-based research in historical ecology, and the new frontiers in this exciting field.


2015 ◽  
Vol 370 (1659) ◽  
pp. 20130276 ◽  
Author(s):  
Ryan P. Kelly ◽  
Ashley L. Erickson ◽  
Lindley A. Mease ◽  
Willow Battista ◽  
John N. Kittinger ◽  
...  

Three decades of study have revealed dozens of examples in which natural systems have crossed biophysical thresholds (‘tipping points’)—nonlinear changes in ecosystem structure and function—as a result of human-induced stressors, dramatically altering ecosystem function and services. Environmental management that avoids such thresholds could prevent severe social, economic and environmental impacts. Here, we review management measures implemented in ecological systems that have thresholds. Using Ostrom's social–ecological systems framework, we analysed key biophysical and institutional factors associated with 51 social–ecological systems and associated management regimes, and related these to management success defined by ecological outcomes. We categorized cases as instances of prospective or retrospective management, based upon whether management aimed to avoid a threshold or to restore systems that have crossed a threshold. We find that smaller systems are more amenable to threshold-based management, that routine monitoring is associated with successful avoidance of thresholds and recovery after thresholds have been crossed, and that success is associated with the explicit threshold-based management. These findings are powerful evidence for the policy relevance of information on ecological thresholds across a wide range of ecosystems.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 387
Author(s):  
Miguel A. Repullo-Ruibérriz de Torres ◽  
Manuel Moreno-García ◽  
Rafaela Ordóñez-Fernández ◽  
Antonio Rodríguez-Lizana ◽  
Belén Cárceles Rodríguez ◽  
...  

Almond (Prunus dulcis Mill. [D.A. Webb]) is the third most widely spread crop in Spain and has traditionally been cultivated in marginal areas and shallow soils under rainfed conditions. However, it recently has been progressively introduced in flat irrigated areas. The implementation of cover crops in the inter-rows of woody crops has been proven as a suitable strategy to reduce the runoff and soil erosion but they also can boost soil quality and health. A field experiment was conducted during two-monitoring seasons to examine the soil nitrogen and carbon sequestration potential of three seeded cover crops [barley (Hordeum vulgare L.), hairy vetch (Vicia villosa Roth), and a mixture of 65% barley and 35% vetch] and a control of spontaneous flora in irrigated almond orchards (SW Spain). Here, we show that barley provided the highest biomass amount, followed by mixture covers, vetch, and the control treatment. Also, vetch covered the soil faster in the growing stage, but its residues were decomposed easier than barley and mixture treatments during the decomposition period after mowing, providing less soil protection when the risk of water erosion with autumn rainfall is high. On the other hand, vetch improved soil nitrate content by over 35% with respect to barley and mixture treatments at 0–20 cm soil depth throughout the studied period. In addition, a greater carbon input to the soil was determined in the barley plot. That is, the mixture and barley cover crops had higher potential for carbon sequestration, augmenting the soil organic carbon by more than 1.0 Mg ha−1 during the study period. Thus, taking into consideration the findings of the present experiment, the establishment of a seeded cover crop would be more advisable than spontaneous flora to mitigate soil erosion, enhancing soil fertility and carbon sequestration in irrigated almond plantations in Mediterranean semi-arid regions.


Author(s):  
Hui Wei ◽  
Wenwu Zhao ◽  
Han Wang

Large-scale vegetation restoration greatly changed the soil erosion environment in the Loess Plateau since the implementation of the “Grain for Green Project” (GGP) in 1999. Evaluating the effects of vegetation restoration on soil erosion is significant to local soil and water conservation and vegetation construction. Taking the Ansai Watershed as the case area, this study calculated the soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration, using the Chinese Soil Loess Equation (CSLE), based on rainfall and soil data, remote sensing images and socio-economic data. The effect of vegetation restoration on soil erosion was evaluated by comparing the average annual soil erosion modulus under two scenarios among 16 years. The results showed: (1) vegetation restoration significantly changed the local land use, characterized by the conversion of farmland to grassland, arboreal land, and shrub land. From 2000 to 2015, the area of arboreal land, shrub land, and grassland increased from 19.46 km2, 19.43 km2, and 719.49 km2 to 99.26 km2, 75.97 km2, and 1084.24 km2; while the farmland area decreased from 547.90 km2 to 34.35 km2; (2) the average annual soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration was 114.44 t/(hm²·a) and 78.42 t/(hm²·a), respectively, with an average annual reduction of 4.81 × 106 t of soil erosion amount thanks to the vegetation restoration; (3) the dominant soil erosion intensity changed from “severe and light erosion” to “moderate and light erosion”, vegetation restoration greatly improved the soil erosion environment in the study area; (4) areas with increased erosion and decreased erosion were alternately distributed, accounting for 48% and 52% of the total land area, and mainly distributed in the northwest and southeast of the watershed, respectively. Irrational land use changes in local areas (such as the conversion of farmland and grassland into construction land, etc.) and the ineffective implementation of vegetation restoration are the main reasons leading to the existence of areas with increased erosion.


Sign in / Sign up

Export Citation Format

Share Document