scholarly journals The Arctic Traits Database – a repository of Arctic benthic invertebrate traits

2019 ◽  
Vol 11 (1) ◽  
pp. 301-322 ◽  
Author(s):  
Renate Degen ◽  
Sarah Faulwetter

Abstract. The recently increased interest in marine trait-based studies highlights one general demand – the access to standardized, reference-based trait information. This demand holds especially true for polar regions, where the gathering of ecological information is still challenging. The Arctic Traits Database is a freely accessible online repository (https://doi.org/10.25365/phaidra.49; https://www.univie.ac.at/arctictraits, last access: 20 February 2019) that fulfils these requests for one important component of polar marine life, the Arctic benthic macroinvertebrates. It accounts for (1) obligate traceability of information (every entry is linked to at least one source), (2) exchangeability among trait platforms (use of most common download formats), (3) standardization (use of most common terminology and coding scheme) and (4) user-friendliness (granted by an intuitive web interface and rapid and easy download options, for the first time including the option to download a fuzzy coded trait matrix). The combination of these aspects makes the Arctic Traits Database the currently most sophisticated online accessible trait platform in (not only) marine ecology and a role model for prospective databases of other marine compartments or other (also non-marine) ecosystems. At present the database covers 19 traits (80 trait categories) and holds altogether 14 242 trait entries for 1911 macro- and megabenthic taxa. Thus, the Arctic Traits Database will foster and facilitate trait-based approaches in polar regions in the future and increase our ecological understanding of this rapidly changing system.

2018 ◽  
Author(s):  
Renate Degen ◽  
Sarah Faulwetter

Abstract. The recently increased interest in marine trait-based studies highlights one general demand – the access to standardized, reference-based trait information. This demand holds especially true for polar regions, where the gathering of ecological information is still challenging. The Arctic Traits Database is a freely accessible online repository (https://doi.org/10.25365/phaidra.49; http://https://www.univie.ac.at/arctictraits) that fulfils these requests for one important component of polar marine life, the Arctic benthic macroinvertebrates. It accounts for 1) obligate traceability of information (every entry is linked to at least one source), 2) exchangeability among trait platforms (use of most common download formats), 3) standardization (use of most common terminology and coding scheme), and 4) user friendliness (granted by an intuitive web-interface and rapid and easy download options). The combination of these aspects makes the Arctic Traits Database the currently most sophisticated online accessible trait platform in (not only) marine ecology and a role-model for prospective databases of other marine compartments or other (also non-marine) ecosystems. At present the database covers 20 traits (85 trait categories) and holds altogether 8107 trait entries for 1211 macro- and megabenthic taxa. Thus, the Arctic Traits Database will foster and facilitate trait-based approaches in polar regions in the future and increase our ecological understanding of this rapidly changing system.


2021 ◽  
Vol 44 (2) ◽  
pp. 304-311 ◽  
Author(s):  
William C. Dennison ◽  
Matthew E. S. Bracken ◽  
Maria Brown ◽  
John F. Bruno ◽  
James T. Carlton ◽  
...  

AbstractSusan Lynn Williams (1951–2018) was an exceptional marine ecologist whose research focused broadly on the ecology of benthic nearshore environments dominated by seagrasses, seaweeds, and coral reefs. She took an empirical approach founded in techniques of physiological ecology. Susan was committed to applying her research results to ocean management through outreach to decision-makers and resource managers. Susan’s career included research throughout the USA in tropical, temperate, and polar regions, but she specialized in tropical marine ecology. Susan’s scholarship, leadership, and friendship touched many people, leading to this multi-authored paper. Susan’s scholarship was multi-faceted, and she excelled in scientific discovery, integration of scientific results, application of science for conservation, and teaching, especially as a mentor to undergraduate and graduate students and postdoctoral scholars. Susan served in a variety of leadership positions throughout her career. She embodied all facets of leadership; leading by example, listening to others, committing to the “long haul,” maintaining trust, and creating a platform for all to shine. Susan was an important role model for women in science. Susan was also a loyal friend, maintaining friendships for many decades. Susan loved cooking and entertaining with friends. This paper provides an overview of the accomplishments of Susan in the broad categories of scholarship, leadership, and friendship.


1986 ◽  
Vol 26 (1) ◽  
pp. 100-120 ◽  
Author(s):  
Fiorenzo C. Ugolini

Pedogenic zonation in the soils of the polar regions is a result of gradients in environmental factors and attendant chemical processes. Along a latitudinal transect, it is best manifested at well-drained sites and by soils developed on predominantly silicate rocks. Selected sites in arctic Alaska, in the Canadian arctic, Greenland, and Svalbard adequately fulfill these prerequisites. The processes of podzolization, decarbonization-carbonization, pervection, and salinization as models of arctic pedogenesis demonstrate that processes occurring in the temperate region also operate in the Far North. Brunification, melanization, and oxidation are recognized for the first time as current geochemical and pedogenic mechanisms of the Arctic region. Traditional genetic soil names have been retained because they represent a closer relationship to pedogenic processes than the more modern nomenclature. The identification, the chemical behavior, the strength, abundance, and mobility of the proton donors and conjugate bases are keys to the genesis of soils and the distinction of contrasting soil processes. This new approach to the understanding of arctic pedogenesis can be better fulfilled by collecting, analyzing, and interpreting soil solution obtained in situ.


Author(s):  
Michael D. Gordin

Dmitrii Mendeleev (1834–1907) is a name we recognize, but perhaps only as the creator of the periodic table of elements. Generally, little else has been known about him. This book is an authoritative biography of Mendeleev that draws a multifaceted portrait of his life for the first time. As the book reveals, Mendeleev was not only a luminary in the history of science, he was also an astonishingly wide-ranging political and cultural figure. From his attack on Spiritualism to his failed voyage to the Arctic and his near-mythical hot-air balloon trip, this is the story of an extraordinary maverick. The ideals that shaped his work outside science also led Mendeleev to order the elements and, eventually, to engineer one of the most fascinating scientific developments of the nineteenth century. This book is a classic work that tells the story of one of the world's most important minds.


Author(s):  
S. A. Syurin ◽  
S. A. Gorbanev

In 2007-2017, 22 occupational diseases were diagnosed for the first time in 18 workers engaged in aluminium production in the Arctic. A marked decrease in occupational morbidity in 2010-2017 was found, which was not associated with changes in working conditions and therefore requires an appropriate scientific explanation.


2021 ◽  
Vol 9 (2) ◽  
pp. 317
Author(s):  
Dolors Vaqué ◽  
Julia A. Boras ◽  
Jesús Maria Arrieta ◽  
Susana Agustí ◽  
Carlos M. Duarte ◽  
...  

The ocean surface microlayer (SML), with physicochemical characteristics different from those of subsurface waters (SSW), results in dense and active viral and microbial communities that may favor virus–host interactions. Conversely, wind speed and/or UV radiation could adversely affect virus infection. Furthermore, in polar regions, organic and inorganic nutrient inputs from melting ice may increase microbial activity in the SML. Since the role of viruses in the microbial food web of the SML is poorly understood in polar oceans, we aimed to study the impact of viruses on prokaryotic communities in the SML and in the SSW in Arctic and Antarctic waters. We hypothesized that a higher viral activity in the SML than in the SSW in both polar systems would be observed. We measured viral and prokaryote abundances, virus-mediated mortality on prokaryotes, heterotrophic and phototrophic nanoflagellate abundance, and environmental factors. In both polar zones, we found small differences in environmental factors between the SML and the SSW. In contrast, despite the adverse effect of wind, viral and prokaryote abundances and virus-mediated mortality on prokaryotes were higher in the SML than in the SSW. As a consequence, the higher carbon flux released by lysed cells in the SML than in the SSW would increase the pool of dissolved organic carbon (DOC) and be rapidly used by other prokaryotes to grow (the viral shunt). Thus, our results suggest that viral activity greatly contributes to the functioning of the microbial food web in the SML, which could influence the biogeochemical cycles of the water column.


2021 ◽  
Author(s):  
Joanna Davies ◽  
Anders Møller Mathiasen ◽  
Kristiane Kristensen ◽  
Christof Pearce ◽  
Marit-Solveig Seidenkrantz

<p>The polar regions exhibit some of the most visible signs of climate change globally; annual mass loss from the Greenland Ice Sheet (GrIS) has quadrupled in recent decades, from 51 ± 65 Gt yr<sup>−1</sup> (1992-2001) to 211 ± 37 Gt yr<sup>−1</sup> (2002-2011). This can partly be attributed to the widespread retreat and speed-up of marine-terminating glaciers. The Zachariae Isstrøm (ZI) is an outlet glacier of the Northeast Greenland Ice Steam (NEGIS), one of the largest ice streams of the GrIS (700km), draining approximately 12% of the ice sheet interior. Observations show that the ZI began accelerating in 2000, resulting in the collapse of the floating ice shelf between 2002 and 2003. By 2014, the ice shelf extended over an area of 52km<sup>2</sup>, a 95% decrease in area since 2002, where it extended over 1040km<sup>2</sup>. Paleo-reconstructions provide an opportunity to extend observational records in order to understand the oceanic and climatic processes governing the position of the grounding zone of marine terminating glaciers and the extent of floating ice shelves. Such datasets are thus necessary if we are to constrain the impact of future climate change projections on the Arctic cryosphere.</p><p>A multi-proxy approach, involving grain size, geochemical, foraminiferal and sedimentary analysis was applied to marine sediment core DA17-NG-ST8-92G, collected offshore of the ZI, on  the Northeast Greenland Shelf. The aim was to reconstruct changes in the extent of the ZI and the palaeoceanographic conditions throughout the Early to Mid Holocene (c.a. 12,500-5,000 cal. yrs. BP). Evidence from the analysis of these datasets indicates that whilst there has been no grounded ice at the site over the last 12,500 years, the ice shelf of the ZI extended as a floating ice shelf over the site between 12,500 and 9,200 cal. yrs. BP, with the grounding line further inland from our study site. This was followed by a retreat in the ice shelf extent during the Holocene Thermal Maximum; this was likely to have been governed, in part, by basal melting driven by Atlantic Water (AW) recirculated from Svalbard or from the Arctic Ocean. Evidence from benthic foraminifera suggest that there was a shift from the dominance of AW to Polar Water at around 7,500 cal. yrs. BP, although the ice shelf did not expand again despite of this cooling of subsurface waters.</p>


2006 ◽  
Vol 44 ◽  
pp. 108-112 ◽  
Author(s):  
M.J. Doble ◽  
D.J.L. Mercer ◽  
D.T. Meldrum ◽  
O.C. Peppe

AbstractTraditional methods of measuring the propagation of waves originating from ocean swell and other sources have relied on wire strain gauges, accelerometers or tiltmeters. All methods required constant attention to keep in range, while data recovery has demanded that the instrument site be revisited. In this paper, we describe the use of ultra-sensitive tiltmeters and novel re-zeroing techniques to autonomously gather wave data from both polar regions. A key feature of our deployments has been the use of the Iridium satellite communications system as a way of ensuring continuous data recovery and remote control of the instrumentation. Currently four instruments have been successfully reporting from the Arctic Ocean for over 18 months, with two further units deployed in 2005, one in the Weddell Sea, Antarctica, and one additional unit in the Arctic.


Sign in / Sign up

Export Citation Format

Share Document