scholarly journals A comprehensive and synthetic dataset for global, regional, and national greenhouse gas emissions by sector 1970–2018 with an extension to 2019

2021 ◽  
Vol 13 (11) ◽  
pp. 5213-5252
Author(s):  
Jan C. Minx ◽  
William F. Lamb ◽  
Robbie M. Andrew ◽  
Josep G. Canadell ◽  
Monica Crippa ◽  
...  

Abstract. To track progress towards keeping global warming well below 2 ∘C or even 1.5 ∘C, as agreed in the Paris Agreement, comprehensive up-to-date and reliable information on anthropogenic emissions and removals of greenhouse gas (GHG) emissions is required. Here we compile a new synthetic dataset on anthropogenic GHG emissions for 1970–2018 with a fast-track extension to 2019. Our dataset is global in coverage and includes CO2 emissions, CH4 emissions, N2O emissions, as well as those from fluorinated gases (F-gases: HFCs, PFCs, SF6, NF3) and provides country and sector details. We build this dataset from the version 6 release of the Emissions Database for Global Atmospheric Research (EDGAR v6) and three bookkeeping models for CO2 emissions from land use, land-use change, and forestry (LULUCF). We assess the uncertainties of global greenhouse gases at the 90 % confidence interval (5th–95th percentile range) by combining statistical analysis and comparisons of global emissions inventories and top-down atmospheric measurements with an expert judgement informed by the relevant scientific literature. We identify important data gaps for F-gas emissions. The agreement between our bottom-up inventory estimates and top-down atmospheric-based emissions estimates is relatively close for some F-gas species (∼ 10 % or less), but estimates can differ by an order of magnitude or more for others. Our aggregated F-gas estimate is about 10 % lower than top-down estimates in recent years. However, emissions from excluded F-gas species such as chlorofluorocarbons (CFCs) or hydrochlorofluorocarbons (HCFCs) are cumulatively larger than the sum of the reported species. Using global warming potential values with a 100-year time horizon from the Sixth Assessment Report by the Intergovernmental Panel on Climate Change (IPCC), global GHG emissions in 2018 amounted to 58 ± 6.1 GtCO2 eq. consisting of CO2 from fossil fuel combustion and industry (FFI) 38 ± 3.0 GtCO2, CO2-LULUCF 5.7 ± 4.0 GtCO2, CH4 10 ± 3.1 GtCO2 eq., N2O 2.6 ± 1.6 GtCO2 eq., and F-gases 1.3 ± 0.40 GtCO2 eq. Initial estimates suggest further growth of 1.3 GtCO2 eq. in GHG emissions to reach 59 ± 6.6 GtCO2 eq. by 2019. Our analysis of global trends in anthropogenic GHG emissions over the past 5 decades (1970–2018) highlights a pattern of varied but sustained emissions growth. There is high confidence that global anthropogenic GHG emissions have increased every decade, and emissions growth has been persistent across the different (groups of) gases. There is also high confidence that global anthropogenic GHG emissions levels were higher in 2009–2018 than in any previous decade and that GHG emissions levels grew throughout the most recent decade. While the average annual GHG emissions growth rate slowed between 2009 and 2018 (1.2 % yr−1) compared to 2000–2009 (2.4 % yr−1), the absolute increase in average annual GHG emissions by decade was never larger than between 2000–2009 and 2009–2018. Our analysis further reveals that there are no global sectors that show sustained reductions in GHG emissions. There are a number of countries that have reduced GHG emissions over the past decade, but these reductions are comparatively modest and outgrown by much larger emissions growth in some developing countries such as China, India, and Indonesia. There is a need to further develop independent, robust, and timely emissions estimates across all gases. As such, tracking progress in climate policy requires substantial investments in independent GHG emissions accounting and monitoring as well as in national and international statistical infrastructures. The data associated with this article (Minx et al., 2021) can be found at https://doi.org/10.5281/zenodo.5566761.

2021 ◽  
Author(s):  
Jan C. Minx ◽  
William F. Lamb ◽  
Robbie M. Andrew ◽  
Josep G. Canadell ◽  
Monica Crippa ◽  
...  

Abstract. To track progress towards keeping warming well below 2 °C, as agreed upon in the Paris Agreement, comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions (GHG) is required. Here we provide a dataset on anthropogenic GHG emissions 1970–2019 with a broad country and sector coverage. We build the dataset from recent releases of the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases, and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with data on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three bookkeeping models. We provide an assessment of the uncertainties in each greenhouse gas at the 90 % confidence interval (5th–95th percentile) by combining statistical analysis and comparisons of global emissions inventories with an expert judgement informed by the relevant scientific literature. We identify important data gaps: CH4 and N2O emissions could be respectively 10–20 % higher than reported in EDGAR once all emissions are accounted. F-gas emissions estimates for individual species in EDGARv5 do not align well with atmospheric measurements and the F-gas total exceeds measured concentrations by about 30 %. However, EDGAR and official national emission reports under the UNFCCC do not comprehensively cover all relevant F-gas species. Excluded F-gas species such as chlorofluorocarbons (CFCs) or hydrochlorofluorocarbons (HCFCs) are larger than the sum of the reported species. GHG emissions in 2019 amounted to 59 ± 6.6 GtCO2eq: CO2 emissions from FFI were 38 ± 3.0 Gt, CO2 from LULUCF 6.6 ± 4.6 Gt, CH4 11 ± 3.3 GtCO2eq, N2O 2.4 ±1.5 GtCO2eq and F-gases 1.6 ± 0.49 GtCO2eq. Our analysis of global, anthropogenic GHG emission trends over the past five decades (1970–2019) highlights a pattern of varied, but sustained emissions growth. There is high confidence that global anthropogenic greenhouse gas emissions have increased every decade. Emission growth has been persistent across different (groups of) gases. While CO2 has accounted for almost 75 % of the emission growth since 1970 in terms of CO2eq as reported here, the combined F-gases have grown at a faster rate than other GHGs, albeit starting from low levels in 1970. Today, F-gases make a non-negligible contribution to global warming – even though CFCs and HCFCs, regulated under the Montreal Protocol and not included in our estimates, have contributed more. There is further high confidence that global anthropogenic GHG emission levels were higher in 2010-2019 than in any previous decade and GHG emission levels have grown across the most recent decade. While average annual greenhouse gas emissions growth slowed between 2010–2019 compared to 2000–2009, the absolute increase in average decadal GHG emissions from the 2000s to the 2010s has been the largest since the 1970s – and within all human history as suggested by available long-term data. We note considerably higher rates of change in GHG emissions between 2018 and 2019 than for the entire decade 2010–2019, which is numerically comparable with the period of high GHG emissions growth during the 2000s, but we place low confidence in this finding as the majority of the growth is driven by highly uncertain increases in CO2-LULUCF emissions as well as the use of preliminary data and extrapolation methodologies for these most recent years. While there is a growing number of countries today on a sustained emission reduction trajectory, our analysis further reveals that there are no global sectors that show sustained reductions in GHG emissions. We conclude by highlighting that tracking progress in climate policy requires substantial investments in independent GHG emission accounting and monitoring as well as the available national and international statistical infrastructures. The data associated with this article (Minx et al. 2021) can be found at https://doi.org/10.5281/zenodo.5053056.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


2021 ◽  
Vol 53 (09) ◽  
pp. 575-587
Author(s):  
Christian A. Koch ◽  
Pankaj Sharda ◽  
Jay Patel ◽  
Sriram Gubbi ◽  
Rashika Bansal ◽  
...  

AbstractGlobal warming and the rising prevalence of obesity are well described challenges of current mankind. Most recently, the COVID-19 pandemic arose as a new challenge. We here attempt to delineate their relationship with each other from our perspective. Global greenhouse gas emissions from the burning of fossil fuels have exponentially increased since 1950. The main contributors to such greenhouse gas emissions are manufacturing and construction, transport, residential, commercial, agriculture, and land use change and forestry, combined with an increasing global population growth from 1 billion in 1800 to 7.8 billion in 2020 along with rising obesity rates since the 1980s. The current Covid-19 pandemic has caused some decline in greenhouse gas emissions by limiting mobility globally via repetitive lockdowns. Following multiple lockdowns, there was further increase in obesity in wealthier populations, malnutrition from hunger in poor populations and death from severe infection with Covid-19 and its virus variants. There is a bidirectional relationship between adiposity and global warming. With rising atmospheric air temperatures, people typically will have less adaptive thermogenesis and become less physically active, while they are producing a higher carbon footprint. To reduce obesity rates, one should be willing to learn more about the environmental impact, how to minimize consumption of energy generating carbon dioxide and other greenhouse gas emissions, and to reduce food waste. Diets lower in meat such as a Mediterranean diet, have been estimated to reduce greenhouse gas emissions by 72%, land use by 58%, and energy consumption by 52%.


2011 ◽  
pp. 224-228
Author(s):  
Uwe Lahl

The study proposes a regional approach to calculating indirect land use change (iLUC). The goal is to determine the greenhouse gas emissions (GHG) of biofuels brought about by iLUC in a specific region. A regional approach can be based on the conditions specific to the respective region and the data for this region which is contained in country statistics. This makes the results more resilient. It also appears that LUC is mainly caused locally or regionally. Relevant policy scenarios for different regions were calculated with a regional model. The calculations show reliable results. It is possible to introduce such a regional model in regulations for combating iLUC. The analysis of the policy options for combating iLUC shows that a regional approach would have a much more effective steering effect.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 563
Author(s):  
Kelsey Anderson ◽  
Philip A. Moore ◽  
Jerry Martin ◽  
Amanda J. Ashworth

Gaseous emissions from poultry litter causes production problems for producers as well as the environment, by contributing to climate change and reducing air quality. Novel methods of reducing ammonia (NH3) and greenhouse gas (GHG) emissions in poultry facilities are needed. As such, our research evaluated GHG emissions over a 42 d period. Three separate flocks of 1000 broilers were used for this study. The first flock was used only to produce litter needed for the experiment. The second and third flocks were allocated to 20 pens in a randomized block design with four replicated of five treatments. The management practices studied included an unamended control; a conventional practice of incorporating aluminum sulfate (referred to as alum) at 98 kg/100 m2); a novel litter amendment made from alum mud, bauxite, and sulfuric acid (alum mud litter amendment, AMLA) applied at different rates (49 and 98 kg/100 m2) and methods (surface applied or incorporated). Nitrous oxide emissions were low for all treatments in flocks 2 and 3 (0.40 and 0.37 mg m2 hr−1, respectively). The formation of caked litter (due to excessive moisture) during day 35 and 42 caused high variability in CH4 and CO2 emissions. Alum mud litter amendment and alum did not significantly affect GHGs emissions from litter, regardless of the amendment rate or application method. In fact, litter amendments such as alum and AMLA typically lower GHG emissions from poultry facilities by reducing ventilation requirements to maintain air quality in cooler months due to lower NH3 levels, resulting in less propane use and concomitant reductions in CO2 emissions.


2021 ◽  
Vol 35 (2) ◽  
pp. 225-237
Author(s):  
Feng Gao ◽  
Tongwen Wu ◽  
Jie Zhang ◽  
Aixue Hu ◽  
Gerald A. Meehl

GCB Bioenergy ◽  
2016 ◽  
Vol 9 (3) ◽  
pp. 627-644 ◽  
Author(s):  
Mark Richards ◽  
Mark Pogson ◽  
Marta Dondini ◽  
Edward O. Jones ◽  
Astley Hastings ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document