scholarly journals The consolidated European synthesis of CH<sub>4</sub> and N<sub>2</sub>O emissions for EU27 and UK: 1990–2018

2020 ◽  
Author(s):  
Ana Maria Roxana Petrescu ◽  
Chunjing Qiu ◽  
Philippe Ciais ◽  
Rona L. Thompson ◽  
Philippe Peylin ◽  
...  

Abstract. Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27+UK). We integrate recent emission inventory data, ecosystem process-based model results, and inverse modelling estimates over the period 1990–2018. BU and TD products are compared with European National GHG Inventories (NGHGI) reported to the UN climate convention secretariat UNFCCC in 2019. For uncertainties, we used for NGHGI the standard deviation obtained by varying parameters of inventory calculations, reported by the Member States following the IPCC guidelines recommendations. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model specific uncertainties when reported. In comparing NGHGI with other approaches, a key source of bias is the activities included, e.g. anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011–2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 Tg CH4 yr−1 (EDGAR v5.0) and 19.0 Tg CH4 yr−1 (GAINS), consistent with the NGHGI estimates of 18.9 ± 1.7 Tg CH4 yr−1. TD total inversions estimates give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher resolution atmospheric transport models give a mean emission of 28.8 Tg CH4 yr−1. Coarser resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 Tg CH4yr−1) and surface network (24.4 Tg CH4 yr−1). The magnitude of natural peatland emissions from the JSBACH-HIMMELI model, natural rivers and lakes emissions and geological sources together account for the gap between NGHGI and inversions and account for 5.2 Tg CH4 yr−1. For N2O emissions, over the 2011–2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 Tg N2O yr−1 respectively, agreeing with the NGHGI data (0.9 ± 0.6 Tg N2O yr−1). Over the same period, the average of the three total TD global and regional inversions was 1.3 ± 0.4 and 1.3 ± 0.1 Tg N2O yr−1 respectively, compared to 0.9 Tg N2O yr−1 from the BU data. The TU and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at EU+UK scale and at national scale. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.4288969 (Petrescu et al., 2020).

2021 ◽  
Vol 13 (5) ◽  
pp. 2307-2362
Author(s):  
Ana Maria Roxana Petrescu ◽  
Chunjing Qiu ◽  
Philippe Ciais ◽  
Rona L. Thompson ◽  
Philippe Peylin ◽  
...  

Abstract. Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27 + UK). We integrate recent emission inventory data, ecosystem process-based model results and inverse modeling estimates over the period 1990–2017. BU and TD products are compared with European national greenhouse gas inventories (NGHGIs) reported to the UN climate convention UNFCCC secretariat in 2019. For uncertainties, we used for NGHGIs the standard deviation obtained by varying parameters of inventory calculations, reported by the member states (MSs) following the recommendations of the IPCC Guidelines. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model-specific uncertainties when reported. In comparing NGHGIs with other approaches, a key source of bias is the activities included, e.g., anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011–2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 Tg CH4 yr−1 (EDGAR v5.0) and 19.0 Tg CH4 yr−1 (GAINS), consistent with the NGHGI estimates of 18.9 ± 1.7 Tg CH4 yr−1. The estimates of TD total inversions give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher-resolution atmospheric transport models give a mean emission of 28.8 Tg CH4 yr−1. Coarser-resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 Tg CH4 yr−1) and surface network (24.4 Tg CH4 yr−1). The magnitude of natural peatland emissions from the JSBACH–HIMMELI model, natural rivers and lakes emissions, and geological sources together account for the gap between NGHGIs and inversions and account for 5.2 Tg CH4 yr−1. For N2O emissions, over the 2011–2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 Tg N2O yr−1, respectively, agreeing with the NGHGI data (0.9 ± 0.6 Tg N2O yr−1). Over the same period, the average of the three total TD global and regional inversions was 1.3 ± 0.4 and 1.3 ± 0.1 Tg N2O yr−1, respectively. The TD and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at the EU+UK scale and at the national scale. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.4590875 (Petrescu et al., 2020b).


2018 ◽  
Vol 33 (1) ◽  
pp. 39-59
Author(s):  
Jimmy F. Downes ◽  
Tony Kang ◽  
Sohyung Kim ◽  
Cheol Lee

SYNOPSIS We investigate the effect of mandatory International Financial Reporting Standards (IFRS) adoption in the European Union on the association between accounting estimates and future cash flows, a key concept of accounting quality within the International Accounting Standard Board conceptual framework. We find that the predictive value of accounting estimates improves after IFRS adoption. This improvement is largely driven by specific types of accounting estimates, such as accounts receivable, depreciation, and amortization expense. We also find that the improvement is concentrated in countries with larger differences between pre-IFRS domestic GAAP and IFRS. Our findings suggest that IFRS allow managers to exercise their judgment to provide information about future cash flows through the more subjective/judgmental portion of accounting accruals. JEL Classifications: M16; M49; O52. Data Availability: The data used in this study are from public sources identified in the study.


2020 ◽  
Vol 10 (10) ◽  
pp. 3647
Author(s):  
Peter Fiener ◽  
Tomáš Dostál ◽  
Josef Krása ◽  
Elmar Schmaltz ◽  
Peter Strauss ◽  
...  

In the European Union, soil erosion is identified as one of the main environmental threats, addressed with a variety of rules and regulations for soil and water conservation. The by far most often officially used tool to determine soil erosion is the Universal Soil Loss Equation (USLE) and its regional adaptions. The aim of this study is to use three different regional USLE-based approaches in three different test catchments in the Czech Republic, Germany, and Austria to determine differences in model results and compare these with the revised USLE-base European soil erosion map. The different regional model adaptations and implementation techniques result in substantial differences in test catchment specific mean erosion (up to 75% difference). Much more pronounced differences were modelled for individual fields. The comparison of the region-specific USLE approaches with the revised USLE-base European erosion map underlines the problems and limitations of harmonization procedures. The EU map limits the range of modelled erosion and overall shows a substantially lower mean erosion compared to all region-specific approaches. In general, the results indicate that even if many EU countries use USLE technology as basis for soil conservation planning, a truly consistent method does not exist, and more efforts are needed to homogenize the different methods without losing the USLE-specific knowledge developed in the different regions over the last decades.


2009 ◽  
Vol 167 (1-4) ◽  
pp. 545-558 ◽  
Author(s):  
Recep Kulcu ◽  
Kamil Ekinci ◽  
Fatih Evrendilek ◽  
Can Ertekin

1984 ◽  
Vol 52 (3) ◽  
pp. 553-569 ◽  
Author(s):  
C. C. Gielen ◽  
J. C. Houk

Nonlinear viscous properties of stretch and unloading reflexes in the human wrist were examined using constant-velocity ramp stretches and releases in the range between 5 and 500 mm/s. Subjects were asked to oppose an initial flexor preload and were instructed not to intervene voluntarily when the changes in position were applied. Electromyographic (EMG) activity and net force exerted by the wrist were measured. Although subjects were instructed not to intervene to the applied stretches, even well-practiced subjects sometimes showed unintended triggered reactions, which character could be assisting or resisting. A trial comparison method was used to detect and eliminate responses contaminated by unintended reactions. Ramp stretches further loaded the preloaded flexor muscles. Responses of EMG and force increased steeply initially but after about 1-cm displacement, the slope of these responses decreased to a lower value and remained constant during the remainder of the 5-cm ramp. For higher stretch velocities, the magnitudes and slopes of the responses of EMG and force increased but less than proportionally with ramp velocity. Except for the initial transient, EMG in the loaded flexor muscles and force responses could be described by a product relationship between a linear position-related term and a low fractional power of velocity, after a correction was made for delays in the reflex arc. Mean value of the exponent in the power function of velocity was 0.3 for EMG and 0.17 for force. For higher preloads, incremental responses of force to constant-velocity stretches, plotted as a function of wrist position, shifted to higher values and the slope of increase of force with position became somewhat steeper. This upward shift of the force trace reflects a change of apparent threshold of the stretch reflex. Ramp releases shortened and unloaded the preloaded flexor muscles and stretched the initially inactive extensor muscles. Flexor EMG activity declined progressively with a time course that was independent of velocity. Extensor EMG response depended on preload. At high preloads, there was no activity except for some bursting at the highest velocities. At low preloads, EMG activity was initially absent but started part way through the ramp. The increase of activity was somewhat greater for higher ramp velocities. Force responses to shortening ramps depended on preload. At high preloads, force responses superimposed at all of the low velocities but fell to slightly lower forces at the higher velocities. At low preloads, force traces again superimposed for low velocities and at high velocities only during the initial part of the response.(ABSTRACT TRUNCATED AT 400 WORDS)


2021 ◽  
Vol 10 (2) ◽  
pp. e23910212427
Author(s):  
Vilmar Muller Júnior ◽  
Jucinei José Comin ◽  
Guilherme Wilbert Ferreira ◽  
Jorge Manuel Rodrigues Tavares ◽  
Rafael da Rosa Couto ◽  
...  

Nitrous oxide (N2O) is one of the main gases that contributes to the greenhouse effect. With a Global Warming Potential (GWP) 265 times greater than that of carbon dioxide (CO2), over a 100-year horizon, N2O also has the potential for the depreciation of the ozone layer. The activities related to agriculture and livestock are responsible for approximately 60% of the global anthropogenic emissions of this gas to the atmosphere. In Brazil, the sector corresponds to 37% of total emissions. The objectives of this review article were: (i) To verify which are the main processes involved in N2O emissions in soils fertilized with swine manure; (ii) What are the direct emissions on these soils under different management systems, and; (iii) What are the possible strategies for controlling and mitigating N2O emissions. Therefore, an exploratory and qualitative research of articles was carried out using the following keywords: óxido nitroso’, ‘nitrous oxide’, ‘N2O’, ‘nitrogênio’, ‘nitrogen’, ‘suínos, ‘pig, ‘swine’, ‘dejetos’, ‘manure’ and ‘slurry’. Effects of pig diet, manure treatment systems, presence of heavy metals in the soil and moisture content of manure on N2O emissions were verified. Therefore, we recommend integrated studies of the quantitative and qualitative impacts of the levels and sources of nitrogen in the animals' diets on N2O emissions after the application of these wastes to the soil. We also recommend studies related to the effects of copper and zinc contents added to the soil via swine manure on enzymes that catalyze the biotic denitrification process in the soil.


2018 ◽  
Vol 16 (1) ◽  
pp. e0601 ◽  
Author(s):  
José D. Jiménez-Calderón ◽  
Adela Martínez-Fernández ◽  
Fernando Prospero-Bernal ◽  
José Velarde-Guillén ◽  
Carlos M. Arriaga-Jordán ◽  
...  

This study evaluated the effect of organic or chemical fertilization of maize on cow performance, economic outcomes, and greenhouse gas emission. Each type of maize silage according its different fertilization was used in two rations offered to two different groups of nine Friesian-Holstein cows throughout 4 months. The production cost of the maize silage was 8.8% lower for organic than for chemical fertilization. Both silages had similar nutritive value, except a higher concentration of starch in maize with organic fertilization, which allowed a reduction in the proportion of concentrate in the ration, saving 25.3 eurocents per cow in the daily ration, generating a positive balance of 21.8 eurocents per cow and day. The milk yield and composition were unaffected depending on the type of fertilization, whereas the estimation of CH4 and N2O emissions with chemical fertilization was higher than emissions with organic fertilization. As a result, it is possible to increase the sustainability and profitability of dairy production with reuse and recycling of manure.


2016 ◽  
Author(s):  
Stephanie K. Jones ◽  
Carole Helfter ◽  
Margaret Anderson ◽  
Mhairi Coyle ◽  
Claire Campbell ◽  
...  

Abstract. Intensively managed grazed grasslands in temperate climates are globally important environments for the exchange of the greenhouse gases (GHGs) carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). We assessed the N and C budget of a mostly grazed, occasionally cut, and fertilized grassland in SE Scotland by measuring or modelling all relevant imports and exports to the field as well as changes in soil C and N pools over time. The N budget was dominated by import from inorganic and organic fertilisers (21.9 g N m2 yr−1) and losses from leaching (5.3 g N m2 yr−1), N2 emissions and NOx and NH3 volatilisation (6.4 g N m2 yr−1). The efficiency of N use by animal products (meat and wool) averaged 11 %. On average over nine years (2002–2010) the balance of N fluxes suggested that 7.2 ± 4.6 g N m−2 y−1 (mean ± confidence interval at p > 0.95) were stored in the soil. The largest component of the C budget was the net ecosystem exchange of CO2 (NEE), at an average uptake rate of 218 ± 155 g C m−2 y−1 over the nine years. This sink strength was offset by carbon export from the field mainly as harvest (48.9 g C m2 yr−1) and leaching (16.4 g C m2 yr−1). The other export terms, CH4 emissions from the soil, manure applications and enteric fermentation were negligible and only contributed to 0.02–4.2 % of the total C losses. Only a small fraction of C was incorporated into the body of the grazing animals. Inclusion of these C losses in the budget resulted in a C sink strength of 163 ± 140 g C m−2 y−1. On the contrary, soil stock measurements taken in May 2004 and May 2011 indicated that the grassland sequestered N in the 0–60 cm soil layer at 4.51 ± 2.64 g N m−2 y−1 and lost C at a rate of 29.08 ± 38.19 g C m−2 y-1, respectively. Potential reasons for the discrepancy between these estimates are probably an underestimation of C and N losses, especially from leaching fluxes as well as from animal respiration. The average greenhouse gas (GHG) balance of the grassland was −366 ± 601 g CO2 eq m−2 y−1 and strongly affected by CH4 and N2O emissions. The GHG sink strength of the NEE was reduced by 54 % by CH4 and N2O emissions. Enteric fermentation from the ruminating sheep proved to be an important CH4 source, exceeding the contribution of N2O to the GHG budget in some years.


2012 ◽  
Vol 419 ◽  
pp. 178-186 ◽  
Author(s):  
Shohei Riya ◽  
Sheng Zhou ◽  
Yoichi Watanabe ◽  
Masaki Sagehashi ◽  
Akihiko Terada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document