scholarly journals Short Communication: Monitoring rockfalls with the Raspberry Shake

2018 ◽  
Vol 6 (4) ◽  
pp. 1219-1227 ◽  
Author(s):  
Andrea Manconi ◽  
Velio Coviello ◽  
Maud Galletti ◽  
Reto Seifert

Abstract. We evaluate the performance of the low-cost seismic sensor Raspberry Shake to identify and monitor rockfall activity in alpine environments. The test area is a slope adjacent to the Great Aletsch Glacier in the Swiss Alps, i.e. the Moosfluh deep-seated instability, which has recently undergone a critical acceleration phase. A local seismic network composed of three Raspberry Shake was deployed starting from May 2017 in order to record rockfall activity and its relation with the progressive rock-slope degradation potentially leading to a large rock-slope failure. Here we present a first assessment of the seismic data acquired from our network after a monitoring period of 1 year. We show that our network performed well during the whole duration of the experiment, including the winter period in severe alpine conditions, and that the seismic data acquired allowed us to clearly discriminate between rockfalls and other events. This work also provides general information on the potential use of such low-cost sensors in environmental seismology.

2018 ◽  
Author(s):  
Andrea Manconi ◽  
Velio Coviello ◽  
Maud Galletti ◽  
Reto Seifert

Abstract. We evaluate the performance of the low-cost seismic sensors Raspberry Shake (RS) to identify and monitor rock fall activity in alpine environments. The test area is a slope adjacent to the Great Aletsch glacier in the Swiss Alps, i.e. the Moosfluh deep-seated instability, which is undergoing an acceleration phase since the late summer 2016. A local seismic network composed of three RS seismometers was deployed starting from May 2017, in order to record rock fall activity and its relation with the progressive rock slope degradation potentially leading to a large rock slope failure. Here we present a first assessment of the seismic data acquired from RS sensors after a monitoring period of 1-year. A webcam was installed on the opposite side of the active slope, acquiring images every 10 minutes to validate the occurrence and identify rock falls as well as their location and approximate size. Despite seismic data were collected mainly to identify rock fall phenomena, other event types were recorded during the monitoring period. Thus, this work provides also general insights on the potential use of low cost sensors in environmental seismology investigations.


2016 ◽  
Vol 42 (3) ◽  
pp. 426-438 ◽  
Author(s):  
Marcia Phillips ◽  
Andrea Wolter ◽  
Rachel Lüthi ◽  
Florian Amann ◽  
Robert Kenner ◽  
...  

2020 ◽  
Author(s):  
Simon Loew ◽  
Nora Buehler ◽  
Jordan Aaron

<p>A large number of scientific contributions (e.g. BAFU 2017, Speicher 2017, Phillips et al. 2017, Ravanel et al. 2017, Haque et al. 2016) have suggested that many recent rock slope failures in the European Alps have been triggered by climate warming. For example, Huggel et al. 2012 and Fischer et al. 2012 could show that rock fall frequencies above 2000 masl increased significantly since 1990 at regional (Swiss Alps and adjacent areas) and local (Mont Blanc) scale, based on 52 events larger than 1000 m<sup>3</sup> (PERMOS data base) covering the period 1900-2010. This increase in frequency could be correlated with a significant departure of mean annual temperature from the 1960–1990 average, based on a dataset describing conditions in Switzerland. Paranunzio et al. 2016 systematically studied the climatic conditions and anomalies occurring before 41 rock fall events in the Italian Alps with volumes of several hundred to several million m<sup>3</sup>. They show that positive and negative temperature anomalies triggered the majority of analysed rock fall events in a complex manner, but that melting of permafrost was clearly not the only rock fall trigger.</p><p>However, there have been no studies which systematically investigate changes in the frequency of rock fall events based on complete inventories covering a large range of rock fall volumes. To fill this gap, we have generated a new database for rapid rock slope failures in the Swiss Alps covering events larger than 100’000 m<sup>3</sup> (Bühler 2019, BSc Thesis ETH 2019). This catalogue covers the period between 1700 and 2019 and includes 86 events with reliably estimated volume, date and location of occurrence, and pre-disposing factors (such as slope orientation, permafrost occurrence and geological setting). Volume-cumulative frequency plots of the events demonstrate completeness of the catalogue for all size classes, and significant changes in the ratios between large and small events through time.</p><p>An enhanced frequency of the volume class of 10<sup>5 </sup>m<sup>3</sup> (100’000-999’000 m<sup>3</sup>) is observed starting from 1940, predominantly occurring in permafrost areas and elevations ranging between 2800 and 3200 masl. This increasing frequency signal with time disappears for increasing volumes beyond a magnitude of about 400’000 m<sup>3</sup> and is clearly absent for very large rock slope failure of millions to tens of millions of m<sup>3</sup>.</p><p>The volume dependence of climate sensitivity can be physically explained, as larger volume slope failures tend to have deeper failure surfaces. Typical failure depth for multi-million m<sup>3</sup> slope failures in crystalline rocks are up to a few 100 meters, and beyond the depth of Alpine permafrost. Direct impacts of surface temperature changes on permafrost are mainly manifested through a minor thickening of the active layer, typically ranging between 1 and 10 meters, but indirect effects at the depth range of decameters (i.e. the depth of failure surfaces for events of the 10<sup>5</sup> m<sup>3</sup> class) have been assessed and demonstrated in a large number of studies.</p>


Landslides ◽  
2021 ◽  
Author(s):  
Chiara Crippa ◽  
Elena Valbuzzi ◽  
Paolo Frattini ◽  
Giovanni B. Crosta ◽  
Margherita C. Spreafico ◽  
...  

AbstractLarge slow rock-slope deformations, including deep-seated gravitational slope deformations and large landslides, are widespread in alpine environments. They develop over thousands of years by progressive failure, resulting in slow movements that impact infrastructures and can eventually evolve into catastrophic rockslides. A robust characterization of their style of activity is thus required in a risk management perspective. We combine an original inventory of slow rock-slope deformations with different PS-InSAR and SqueeSAR datasets to develop a novel, semi-automated approach to characterize and classify 208 slow rock-slope deformations in Lombardia (Italian Central Alps) based on their displacement rate, kinematics, heterogeneity and morphometric expression. Through a peak analysis of displacement rate distributions, we characterize the segmentation of mapped landslides and highlight the occurrence of nested sectors with differential activity and displacement rates. Combining 2D decomposition of InSAR velocity vectors and machine learning classification, we develop an automatic approach to characterize the kinematics of each landslide. Then, we sequentially combine principal component and K-medoids cluster analyses to identify groups of slow rock-slope deformations with consistent styles of activity. Our methodology is readily applicable to different landslide datasets and provides an objective and cost-effective support to land planning and the prioritization of local-scale studies aimed at granting safety and infrastructure integrity.


2018 ◽  
Vol 12 (10) ◽  
pp. 3333-3353 ◽  
Author(s):  
Philipp Mamot ◽  
Samuel Weber ◽  
Tanja Schröder ◽  
Michael Krautblatter

Abstract. Instability and failure of high mountain rock slopes have significantly increased since the 1990s coincident with climatic warming and are expected to rise further. Most of the observed failures in permafrost-affected rock walls are likely triggered by the mechanical destabilisation of warming bedrock permafrost including ice-filled joints. The failure of ice-filled rock joints has only been observed in a small number of experiments, often using concrete as a rock analogue. Here, we present a systematic study of the brittle shear failure of ice and rock–ice interfaces, simulating the accelerating phase of rock slope failure. For this, we performed 141 shearing experiments with rock–ice–rock “sandwich”' samples at constant strain rates (10−3 s−1) provoking ice fracturing, under normal stress conditions ranging from 100 to 800 kPa, representing 4–30 m of rock overburden, and at temperatures from −10 to −0.5 ∘C, typical for recent observed rock slope failures in alpine permafrost. To create close to natural but reproducible conditions, limestone sample surfaces were ground to international rock mechanical standard roughness. Acoustic emission (AE) was successfully applied to describe the fracturing behaviour, anticipating rock–ice failure as all failures are predated by an AE hit increase with peaks immediately prior to failure. We demonstrate that both the warming and unloading (i.e. reduced overburden) of ice-filled rock joints lead to a significant drop in shear resistance. With a temperature increase from −10 to −0.5 ∘C, the shear stress at failure reduces by 64 %–78 % for normal stresses of 100–400 kPa. At a given temperature, the shear resistance of rock–ice interfaces decreases with decreasing normal stress. This can lead to a self-enforced rock slope failure propagation: as soon as a first slab has detached, further slabs become unstable through progressive thermal propagation and possibly even faster by unloading. Here, we introduce a new Mohr–Coulomb failure criterion for ice-filled rock joints that is valid for joint surfaces, which we assume similar for all rock types, and which applies to temperatures from −8 to −0.5 ∘C and normal stresses from 100 to 400 kPa. It contains temperature-dependent friction and cohesion, which decrease by 12 % ∘C−1 and 10 % ∘C−1 respectively due to warming and it applies to temperature and stress conditions of more than 90 % of the recently documented accelerating failure phases in permafrost rock walls.


2017 ◽  
Author(s):  
Anne Schöpa ◽  
Wei-An Chao ◽  
Bradley Lipovsky ◽  
Niels Hovius ◽  
Robert S. White ◽  
...  

Abstract. Using data from a network of 58 seismic stations, we characterise a large landslide that occurred at the southeastern corner of the Askja caldera, Iceland, on 21 July 2014, including its precursory tremor and mass wasting aftermath. Our study is motivated by the need for deeper generic understanding of the processes operating not only at the time of catastrophic slope failure, but also in the preparatory phase and during the transient into the subsequent stable state. In addition, it is prompted by the high hazard potential of the steep caldera lake walls at Askja as tsunami waves created by the landslide reached famous tourist spots 60 m above the lake level. Since direct observations of the event are lacking, the seismic data give valuable details on the dynamics of this landslide episode. The excellent seismic data quality and coverage of the stations of the Askja network made it possible to jointly analyse the long- and short-period signals of the landslide to obtain information about the triggering, initiation, timing, and propagation of the slide. The seismic signal analysis and a landslide force history inversion of the long-period seismic signals showed that the Askja landslide was a single, large event starting at the SE corner of the caldera lake at 23:24:05 UTC and propagating to the NW in the following 2 min. The bulk sliding mass was 7–16 × 1010 kg, equivalent to a collapsed volume of 35–80 × 106 m3, and the centre of mass was displaced horizontally downslope by 1260 ± 250 m during landsliding. The seismic records of stations up to 30 km away from the landslide source area show a tremor signal that started 30 min before the main landslide failure. It is harmonic, with a fundamental frequency of 2.5 Hz and shows time-dependent changes of its frequency content. We attribute the complex tremor signal to accelerating and decelerating stick-slip motion on failure planes at the base and the sides of the landslide body. The accelerating motion culminated in aseismic slip of the landslide visible as a drop in the seismic amplitudes down to the background noise level 2 min before the landslide high-energy signal begins. We propose that the seismic signal of the precursory tremor may be developed as an indicator for landslide early-warning systems. The 8 hours after the main landslide failure are characterised by smaller slope failures originating from the destabilised caldera wall decaying in frequency and magnitude. We introduce the term afterslides for this subsequent, declining slope activity after a large landslide.


2018 ◽  
Vol 2 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Shasta Claire Henry ◽  
Peter B. McQuillan ◽  
James B. Kirkpatrick

The Southernmost region of Australia, the island of Tasmania, is also the most mountainous, with large areas of rugged alpine environments. This entomological frontier offers a distinct suite of insects for study including many endemic taxa. However, harsh weather, remote locations and rough terrain represent an environment too extreme for many existing insect trap designs. We report here on the design and efficacy of a new Alpine Malaise Trap (AMT), which can be readily hybridised with several other common insect trapping techniques. Advantages of the design include its light weight and portability, low cost, robustness, rapid deployment and long autonomous sampling period. The AMT was field tested in the Tasmanian highlands (AUST) in 2017. A total of 16 orders were collected. As expected, samples are dominated by Diptera. However, the trap also collected a range of flightless taxa including endemic and apterous species, Apteropanorpatasmanica – closest relative of the boreal, snow scorpionflies (Boreidae). Combined and compared with other trap types the Alpine Malaise Traps captured less specimens but of a greater diversity than passive sticky traps, while drop traps captured less specimens but a greater diversity than AMT. The statistical potential of the catch is discussed.


2021 ◽  
Vol 56 (5) ◽  
pp. 340-350
Author(s):  
Ngoc Binh Vu ◽  
Truong Thanh Phi ◽  
Thanh Cong Nguyen ◽  
Hong Thinh Phi ◽  
Quy Nhan Pham ◽  
...  

The research aimed to study 24 rock slope surfaces along the road around Hon Lon Island, Kien Hai district, Kien Giang province, Vietnam. The analytical results have determined slope failure, wedge failure, and toppling, which occurred on almost slope surface and the average percentage of plane failure is the largest. The average percent of plane failure is 19.23%, the wedge failure is 15.35%, and the toppling fault is 6.73%. Besides, the analytical results have also identified the slope surfaces which can be the key blocks: ND-13, 18, 23, 25, 34, 37, 45, 51, 62, 63. The other analytical results show that the existence of key blocks at the rock slope surfaces in the N-S direction, dip to E at the survey locations: ND-13, 23, 63 and dip to W at the survey locations: ND-37, 45; in the NE-SW direction, dip to SE at the survey locations: ND-15, 62 and dip to NW at the survey locations: ND-18, 34; in the NW-SE direction, dip to SW at the survey location ND-51. These results have important significance to support for protecting slope surface safety.


2021 ◽  
Author(s):  
Philipp Marr ◽  
Stefan Winkler ◽  
Svein Olaf Dahl ◽  
Jörg Löffler

<p>Periglacial, paraglacial and related boulder-dominated landforms constitute a valuable, but often unexplored source of palaeoclimatic and morphodynamic information. The timing of landform formation and stabilization can be linked to past cold climatic conditions which offers the possibility to reconstruct cold climatic periods. In this study, Schmidt-hammer exposure-age dating (SHD) was applied to a variety of boulder-dominated landforms (sorted stripes, blockfield, paraglacial alluvial fan, rock-slope failure) in Rondane, eastern South Norway for the first time. On the basis of an old and young control point a local calibration curve was established from which surface exposure ages of each landform were calculated. The investigation of formation, stabilization and age of the respective landforms permitted an assessment of Holocene climate variability in Rondane and its connectivity to landform evolution. The obtained SHD age estimates range from 11.15 ± 1.22 to 3.99 ± 1.52 ka which shows their general inactive and relict character. Most surface exposure ages of the sorted stripes cluster between 9.62 ± 1.36 and 9.01 ± 1.21 ka and appear to have stabilized towards the end of the ‘Erdalen Event’ or in the following warm period prior to ‘Finse Event’. The blockfield age with 8.40 ± 1.16 ka indicates landform stabilization during ‘Finse Event’, around the onset of the Holocene Thermal Maximum (~8.0–5.0 ka). The paraglacial alluvial fan with its four subsites shows age ranges from 8.51 ± 1.63 to 3.99 ± 1.52 ka. The old exposure age points to fan aggradation follow regional deglaciation due to paraglacial processes, whereas the younger ages can be explained by increasing precipitation during the onset neoglaciation at ~4.0 ka. Surface exposure age of the rock-slope failure with 7.39 ± 0.74 ka falls into a transitional climate period towards the Holocene Thermal Maximum (~8.0–5.0 ka). This indicates that climate-driven factors such as decreasing permafrost depth and/or increasing hydrological pressure negatively influence slope stability. Our obtained first surface exposure ages from boulder-dominated landforms in Rondane give important insights to better understand the palaeoclimatic variability in the Holocene.</p>


2020 ◽  
Vol 39 (7) ◽  
pp. 480-487
Author(s):  
Patrick Smith ◽  
Brandon Mattox

The P-Cable high-resolution 3D marine acquisition system tows many short, closely separated streamers behind a small source. It can provide 3D seismic data of very high temporal and spatial resolution. Since the system is containerized and has small dimensions, it can be deployed at short notice and relatively low cost, making it attractive for time-lapse seismic reservoir monitoring. During acquisition of a 3D high-resolution survey in the Gulf of Mexico in 2014, a pair of sail lines were repeated to form a time-lapse seismic test. We processed these in 2019 to evaluate their geometric and seismic repeatability. Geometric repetition accuracy was excellent, with source repositioning errors below 10 m and bin-based receiver positioning errors below 6.25 m. Seismic data comparisons showed normalized root-mean-square difference values below 10% between 40 and 150 Hz. Refinements to the acquisition system since 2014 are expected to further improve repeatability of the low-frequency components. Residual energy on 4D difference seismic data was low, and timing stability was good. We conclude that the acquisition system is well suited to time-lapse seismic surveying in areas where the reservoir and time-lapse seismic signal can be adequately imaged by small-source, short-offset, low-fold data.


Sign in / Sign up

Export Citation Format

Share Document