scholarly journals Zur letzten Eiszeit im alpinen und nordeuropäischen Raum

1987 ◽  
Vol 42 (2) ◽  
pp. 93-98 ◽  
Author(s):  
G. Glückert

Abstract. On the last Glaciation of the Alps and Fennoscandia. During the Pleistocene the Alps and the Fennoscandian Shield were covered several times with extensive ice caps. During the last Ice Age. the Würm or Weichsel Glaciation, the maximum extent of the glaciers occurred at the end of the Ice Age, as late as 20.000 years ago. The main retreat phases during deglaciation were marked as distinct ice marginal zones and dated between 20,000 and 9,000 BP.

1988 ◽  
Vol 10 ◽  
pp. 167-170 ◽  
Author(s):  
T. Staffelbach ◽  
B. Stauffer ◽  
H. Oeschger

Results from deep Greenland ice cores show rapid changes in several parameters in the deepest part. The most probable explanation for these variations is a fast-changing climate during part of the last glaciation. The question arises, however, of whether the observed changes in the ice cores could also be due to, or at least be influenced by, discontinuities in the stratigraphy. We present new CO2 and δ18O data from the Camp Century and Dye 3 deep ice cores. The data show rapid changes in CO2 and δ18O in both cores. One transition which was investigated in detail seems to be more rapid in the ice core from Dye 3 than in the Camp Century core. The broadening of a sharp δ18O transition due to molecular diffusion is discussed. Since this broadening is larger than the observed width of the transition, we discuss the possibility of a mechanism that can produce stratigraphic disturbances on a small scale. This mechanism is based on a calculation of the compression of horizontal layers which have equal density but different viscosities.


Author(s):  
Michael Jochim

The environmental changes in Europe at the end of the last ice age had profound effects on human populations. One of these changes, the development of numerous lakes in the region north of the Alps, created new habitats and niches that were rapidly exploited, with significant effects on many aspects of behavior. The record of environmental and archaeological changes in southern Germany and Switzerland are examined with an emphasis on some of the implications of the resulting change in settlement patterns.


1979 ◽  
Vol 23 (89) ◽  
pp. 209-222 ◽  
Author(s):  
R. M. Koerner ◽  
D. A. Fisher

AbstractSurface-to-bedrock cores obtained with a CRREL thermal drill were taken in 1972 and 1973 from the top of the Devon Island ice cap. There are very pronounced variations in oxygen isotope, micro-particle concentration, and ice texture in the lowermost 5 m of the core. There is a section of isotopically cold, very fine bubbly ice with high micro-particle concentrations between 2.6 and 4.4 m above the bed, considered to represent the Last Ice Age. There is coarse, isotopically warm, clean ice above and below this. For 1.2 m above the bed, the ice is finer again with high micro-particle concentrations but it shows very low bubble concentration and is isotopically the warmest in the core. While the broad variations are common to both cores, in detail there are significant variations despite the fact that the cores were taken only 27 m apart. The variations, when analysed statistically, show that at least 25–30% of the originally continuous profile is missing from each core. Faulting within the near-bedrock ice may be responsible for some of the effect but bubble fabric also gives evidence for irregular non-laminar flow. Because of the strong relationship between crystal size and micro-particle concentrations in the Devon Island cores, it is suggested that the fine-grained nature of dirty layers in the Antarctic and Greenland ice sheets is due to the effect of the dirt inclusions and not of shearing. Steep isotopic gradients in the Devon Island cores are shown to be evidence for possible shearing, which does not effect any change in the crystal texture. Clear ice near the bed is considered a tectonic feature, but the lack of effect on its bed by the ice cap confirms the non-erosional nature of an ice cap frozen to its bed.In terms of paleoclimatic history, it means that, because of bedrock effects, ice caps of intermediate depth (i.e. <400 m) can give continuous information only over the last approximate 5 000 years. Between 5 000 and 10 000 B.P. the time series becomes slightly discontinuous and beyond 10 000 B.P. so discontinuous as to allow only broad climatic inferences to be drawn.


1979 ◽  
Vol 23 (89) ◽  
pp. 209-222 ◽  
Author(s):  
R. M. Koerner ◽  
D. A. Fisher

AbstractSurface-to-bedrock cores obtained with a CRREL thermal drill were taken in 1972 and 1973 from the top of the Devon Island ice cap. There are very pronounced variations in oxygen isotope, micro-particle concentration, and ice texture in the lowermost 5 m of the core. There is a section of isotopically cold, very fine bubbly ice with high micro-particle concentrations between 2.6 and 4.4 m above the bed, considered to represent the Last Ice Age. There is coarse, isotopically warm, clean ice above and below this. For 1.2 m above the bed, the ice is finer again with high micro-particle concentrations but it shows very low bubble concentration and is isotopically the warmest in the core. While the broad variations are common to both cores, in detail there are significant variations despite the fact that the cores were taken only 27 m apart. The variations, when analysed statistically, show that at least 25–30% of the originally continuous profile is missing from each core. Faulting within the near-bedrock ice may be responsible for some of the effect but bubble fabric also gives evidence for irregular non-laminar flow. Because of the strong relationship between crystal size and micro-particle concentrations in the Devon Island cores, it is suggested that the fine-grained nature of dirty layers in the Antarctic and Greenland ice sheets is due to the effect of the dirt inclusions and not of shearing. Steep isotopic gradients in the Devon Island cores are shown to be evidence for possible shearing, which does not effect any change in the crystal texture. Clear ice near the bed is considered a tectonic feature, but the lack of effect on its bed by the ice cap confirms the non-erosional nature of an ice cap frozen to its bed.In terms of paleoclimatic history, it means that, because of bedrock effects, ice caps of intermediate depth (i.e. &lt;400 m) can give continuous information only over the last approximate 5 000 years. Between 5 000 and 10 000 B.P. the time series becomes slightly discontinuous and beyond 10 000 B.P. so discontinuous as to allow only broad climatic inferences to be drawn.


Ornis Svecica ◽  
1991 ◽  
Vol 1 (1) ◽  
Author(s):  
Tommy Tyrberg

The systematics of West Palearctic crossbills of Genus Loxia has long been disputed. The Scottish form scotica has been considered a species or a subspecies of either Loxia curvirostra or L. pytyopsittacus. The reason is the size and form of its bill which is intermediate between that of the two species. It feeds on pine cones as do four Mediterranean subspecies which also have larger bills than spruce feeding curvirostra. An examination of about 30 fossil Loxia records reveals that curvirostra type crossbills lived in South Europe and the Near East all through the last glaciation and that pytyopsittacus type crossbills lived in the Alps towards the end of the glaciation. These South European crossbills must have fed on Pine since no other conifers were available, and they must have been isolated from Siberian congeners. With the spread of Pines northwards with the retreat of the ice the crossbills followed. The fossils allow two alternative hypothesis depending on whether the large crossbills in the Alps are considered a species or not. If they were pytyopsittacus this species is rather old and both curvirostra and pytyopsittacus spread northwards at the end of the glaciation. One of the species must have gone extinct in Scotland and South Europe and possible curvirostra must have merged with curvirostra spreading with the Spruce from the east. On the other hand, if the Mediterranean crossbills of the Ice Age represent a single, variable species then all the large-billed forms, pytyopsittacus, scotica and the Mediterranean subspecies are descendants of the old “Pine” crossbills of South Europe.


The Holocene ◽  
2005 ◽  
Vol 15 (8) ◽  
pp. 1214-1226 ◽  
Author(s):  
Willy Tinner ◽  
Marco Conedera ◽  
Brigitta Ammann ◽  
Andre F. Lotter

1988 ◽  
Vol 10 ◽  
pp. 167-170 ◽  
Author(s):  
T. Staffelbach ◽  
B. Stauffer ◽  
H. Oeschger

Results from deep Greenland ice cores show rapid changes in several parameters in the deepest part. The most probable explanation for these variations is a fast-changing climate during part of the last glaciation. The question arises, however, of whether the observed changes in the ice cores could also be due to, or at least be influenced by, discontinuities in the stratigraphy. We present new CO2 and δ18O data from the Camp Century and Dye 3 deep ice cores. The data show rapid changes in CO2 and δ18O in both cores. One transition which was investigated in detail seems to be more rapid in the ice core from Dye 3 than in the Camp Century core. The broadening of a sharp δ18O transition due to molecular diffusion is discussed. Since this broadening is larger than the observed width of the transition, we discuss the possibility of a mechanism that can produce stratigraphic disturbances on a small scale. This mechanism is based on a calculation of the compression of horizontal layers which have equal density but different viscosities.


1970 ◽  
Vol 1 (1) ◽  
pp. 29-58 ◽  
Author(s):  
H. H. Lamb ◽  
A. Woodroffe

The prevailing surface temperatures in summer and winter at several different stages of the last ice age, indicated at various points scattered over the Northern Hemisphere, by botanical, glaciological, marine biological, oceanographic, etc. evidence, are used to derive probable distributions of 1000−500 mbar thickness, roughly equivalent to mean temperature of the lowest 5 km of the atmosphere and indicating the general flow pattern of the atmosphere in depth. From these thermal wind patterns computation of the tendency to cyclonic and anticyclonic development is possible. Maps of this development field, taken together with the indicated steering of surface cyclones and anticyclones by the thermal winds, make it possible to sketch probable distributions of surface pressure (and, by implication, surface winds) prevailing during each of the glacial stages studied. New light is thrown on the onset of glaciation and on the regimes associated with the maximum extent of glaciation, with the Alleröd warm epoch and the Post-Alleröd cold stage when there was some readvance of the ice.


Author(s):  
G.W Evatt ◽  
A.C Fowler ◽  
C.D Clark ◽  
N.R.J Hulton

Subglacial floods (jökulhlaups) are well documented as occurring beneath present day glaciers and ice caps. In addition, it is known that massive floods have occurred from ice-dammed lakes proximal to the Laurentide ice sheet during the last ice age, and it has been suggested that at least one such flood below the waning ice sheet was responsible for a dramatic cooling event some 8000 years ago. We propose that drainage of lakes from beneath ice sheets will generally occur in a time-periodic fashion, and that such floods can be of severe magnitude. Such hydraulic eruptions are likely to have caused severe climatic disturbances in the past, and may well do so in the future.


2020 ◽  
Vol 6 (50) ◽  
pp. eaba4844
Author(s):  
Brice R. Rea ◽  
Ramón Pellitero ◽  
Matteo Spagnolo ◽  
Philip Hughes ◽  
Susan Ivy-Ochs ◽  
...  

The Younger Dryas (YD) was a period of rapid climate cooling that occurred at the end of the last glaciation. Here, we present the first palaeoglacier-derived reconstruction of YD precipitation across Europe, determined from 122 reconstructed glaciers and proxy atmospheric temperatures. Positive precipitation anomalies (YD versus modern) are found along much of the western seaboard of Europe and across the Mediterranean. Negative precipitation anomalies occur over the Fennoscandian ice sheet, the North European Plain, and as far south as the Alps. This is consistent with a more southerly and zonal storm track, which is linked to a concomitant southern location of the Polar Frontal Jet Stream, generating cold air outbreaks and enhanced cyclogenesis, especially over the eastern Mediterranean. This atmospheric configuration resembles the modern Scandinavian (SCAND) circulation over Europe (a blocking high pressure over Scandinavia pushing storm tracks south and east), and by analogy, a seasonally varying palaeoprecipitation pattern is interpreted.


Sign in / Sign up

Export Citation Format

Share Document