scholarly journals Near global scale high-resolution seasonal simulations with WRF-NOAHMP v.3.8.1

2019 ◽  
Author(s):  
Thomas Schwitalla ◽  
Kirsten Warrach-Sagi ◽  
Volker Wulfmeyer ◽  
Michael Resch

Abstract. The added value of global simulations on the convection-permitting (CP) scale is a subject of extensive research in the earth system science community. An increase in predictive skill can be expected due to advanced representations of feedbacks and teleconnections in the ocean-land-atmosphere system. However, the proof of this hypothesis by corresponding simulations is computationally and scientifically extremely demanding. We present a novel latitude-belt simulation from 57° S to 65° N using the WRF-NOAHMP model system with a grid increment of 0.03° km over a period of 5 months forced by sea surface temperature observations. In comparison to a latitude-belt simulation with 45 km resolution, at CP resolution the representation of the spatial-temporal scales as well as the organization of tropical convection are improved considerably. The teleconnection pattern are very close to that of the operational ECMWF analyses. The CP simulation is associated with an improvement of the precipitation forecast over South America, Africa, and the Indian Ocean and considerably improves the representation of cloud coverage along the tropics. Our results demonstrate a significant added value of future simulations on the CP scale up to the seasonal forecast range.

2020 ◽  
Vol 13 (4) ◽  
pp. 1959-1974
Author(s):  
Thomas Schwitalla ◽  
Kirsten Warrach-Sagi ◽  
Volker Wulfmeyer ◽  
Michael Resch

Abstract. The added value of global simulations on the convection-permitting (CP) scale is a subject of extensive research in the earth system science community. An increase in predictive skill can be expected due to advanced representations of feedbacks and teleconnections in the ocean–land–atmosphere system. However, the proof of this hypothesis by corresponding simulations is computationally and scientifically extremely demanding. We present a novel latitude-belt simulation from 57∘ S to 65∘ N using the Weather Research and Forecasting (WRF)-Noah-MP model system with a grid increment of 0.03∘ over a period of 5 months forced by sea surface temperature observations. In comparison to a latitude-belt simulation with 45 km resolution, at CP resolution the representation of the spatial-temporal scales and the organization of tropical convection are improved considerably. The teleconnection pattern is very close to that of the operational European Centre for Medium Range Weather Forecasting (ECMWF) analyses. The CP simulation is associated with an improvement of the precipitation forecast over South America, Africa, and the Indian Ocean and considerably improves the representation of cloud coverage along the tropics. Our results demonstrate a significant added value of future simulations on the CP scale up to the seasonal forecast range.


2020 ◽  
Vol 30 (11) ◽  
pp. 1588-1594
Author(s):  
Ogochukwu J. Sokunbi ◽  
Ogadinma Mgbajah ◽  
Augustine Olugbemi ◽  
Bassey O. Udom ◽  
Ariyo Idowu ◽  
...  

AbstractThe COVID-19 pandemic is currently ravaging the globe and the African continent is not left out. While the direct effects of the pandemic in regard to morbidity and mortality appear to be more significant in the developed world, the indirect harmful effects on already insufficient healthcare infrastructure on the African continent would in the long term be more detrimental to the populace. Women and children form a significant vulnerable population in underserved areas such as the sub-Saharan region, and expectedly will experience the disadvantages of limited healthcare coverage which is a major fall out of the pandemic. Paediatric cardiac services that are already sparse in various sub-Saharan countries are not left out of this downsizing. Restrictions on international travel for patients out of the continent to seek medical care and for international experts into the continent for regular mission programmes leave few options for children with cardiac defects to get the much-needed care.There is a need for a region-adapted guideline to scale-up services to cater for more children with congenital heart disease (CHD) while providing a safe environment for healthcare workers, patients, and their caregivers. This article outlines measures adapted to maintain paediatric cardiac care in a sub-Saharan tertiary centre in Nigeria during the COVID-19 pandemic and will serve as a guide for other institutions in the region who will inadvertently need to provide these services as the demand increases.


Author(s):  
Rita Nasti ◽  
Andrea Galeazzi ◽  
Stefania Marzorati ◽  
Federica Zaccheria ◽  
Nicoletta Ravasio ◽  
...  

AbstractRecovery of agro and food-industrial waste and their valorisation via green technologies can help to outline new concepts of industrial strategies. In this contest, a fat enriched of added-value components was extracted from coffee silverskin by applying a supercritical fluid extraction technique (sc-CO2). An appropriate modulation of process parameters like temperature (T = 35, 50, 60 °C) and pressure (p = 200–300 bar) influences the fat yield and the chemical composition, opening the way for targeted extraction. The extraction time, the organic solvent use and the energy consume were reduced compared to Soxhlet. Moreover, a mathematical model was constructed based on the experimental data collected, employed apparatus, and physico-chemical characteristics of biomass, pointing to a possible industrial scale-up. The experimental results are accompanied by a preliminary cost of manufacturing (COM), highlighting how the high investment for the apparatus is compensated by several benefits. Graphic Abstract


2012 ◽  
Vol 9 (8) ◽  
pp. 3113-3130 ◽  
Author(s):  
D. Lombardozzi ◽  
S. Levis ◽  
G. Bonan ◽  
J. P. Sparks

Abstract. Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3) concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera) in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM) to determine the impacts on gross primary productivity (GPP) and transpiration at a constant O3 concentration of 100 parts per billion (ppb). Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.


2012 ◽  
Vol 140 (12) ◽  
pp. 3867-3884 ◽  
Author(s):  
Li Shi ◽  
Harry H. Hendon ◽  
Oscar Alves ◽  
Jing-Jia Luo ◽  
Magdalena Balmaseda ◽  
...  

Abstract In light of the growing recognition of the role of surface temperature variations in the Indian Ocean for driving global climate variability, the predictive skill of the sea surface temperature (SST) anomalies associated with the Indian Ocean dipole (IOD) is assessed using ensemble seasonal forecasts from a selection of contemporary coupled climate models that are routinely used to make seasonal climate predictions. The authors assess predictions from successive versions of the Australian Bureau of Meteorology Predictive Ocean–Atmosphere Model for Australia (POAMA 15b and 24), successive versions of the NCEP Climate Forecast System (CFSv1 and CFSv2), the ECMWF seasonal forecast System 3 (ECSys3), and the Frontier Research Centre for Global Change system (SINTEX-F) using seasonal hindcasts initialized each month from January 1982 to December 2006. The lead time for skillful prediction of SST in the western Indian Ocean is found to be about 5–6 months while in the eastern Indian Ocean it is only 3–4 months when all start months are considered. For the IOD events, which have maximum amplitude in the September–November (SON) season, skillful prediction is also limited to a lead time of about one season, although skillful prediction of large IOD events can be longer than this, perhaps up to about two seasons. However, the tendency for the models to overpredict the occurrence of large events limits the confidence of the predictions of these large events. Some common model errors, including a poor representation of the relationship between El Niño and the IOD, are identified indicating that the upper limit of predictive skill of the IOD has not been achieved.


2010 ◽  
Vol 25 ◽  
pp. 29-36 ◽  
Author(s):  
M. Turco ◽  
M. Milelli

Abstract. To the authors' knowledge there are relatively few studies that try to answer this question: "Are humans able to add value to computer-generated forecasts and warnings?". Moreover, the answers are not always positive. In particular some postprocessing method is competitive or superior to human forecast. Within the alert system of ARPA Piemonte it is possible to study in an objective manner if the human forecaster is able to add value with respect to computer-generated forecasts. Every day the meteorology group of the Centro Funzionale of Regione Piemonte produces the HQPF (Human Quantitative Precipitation Forecast) in terms of an areal average and maximum value for each of the 13 warning areas, which have been created according to meteo-hydrological criteria. This allows the decision makers to produce an evaluation of the expected effects by comparing these HQPFs with predefined rainfall thresholds. Another important ingredient in this study is the very dense non-GTS (Global Telecommunication System) network of rain gauges available that makes possible a high resolution verification. In this work we compare the performances of the latest three years of QPF derived from the meteorological models COSMO-I7 (the Italian version of the COSMO Model, a mesoscale model developed in the framework of the COSMO Consortium) and IFS (the ECMWF global model) with the HQPF. In this analysis it is possible to introduce the hypothesis test developed by Hamill (1999), in which a confidence interval is calculated with the bootstrap method in order to establish the real difference between the skill scores of two competitive forecasts. It is important to underline that the conclusions refer to the analysis of the Piemonte operational alert system, so they cannot be directly taken as universally true. But we think that some of the main lessons that can be derived from this study could be useful for the meteorological community. In details, the main conclusions are the following: – despite the overall improvement in global scale and the fact that the resolution of the limited area models has increased considerably over recent years, the QPF produced by the meteorological models involved in this study has not improved enough to allow its direct use: the subjective HQPF continues to offer the best performance for the period +24 h/+48 h (i.e. the warning period in the Piemonte system); – in the forecast process, the step where humans have the largest added value with respect to mathematical models, is the communication. In fact the human characterization and communication of the forecast uncertainty to end users cannot be replaced by any computer code; – eventually, although there is no novelty in this study, we would like to show that the correct application of appropriated statistical techniques permits a better definition and quantification of the errors and, mostly important, allows a correct (unbiased) communication between forecasters and decision makers.


2021 ◽  
pp. 1-62
Author(s):  
Aiden Jönsson ◽  
Frida A.-M. Bender

AbstractDespite the unequal partitioning of land and aerosol sources between the hemispheres, Earth’s albedo is observed to be persistently symmetric about the equator. This symmetry is determined by the compensation of clouds to the clear-sky albedo. Here, the variability of this inter-hemispheric albedo symmetry is explored by decomposing observed radiative fluxes in the CERES EBAF satellite data record into components reflected by the atmosphere, clouds, and the surface. We find that the degree of inter-hemispheric albedo symmetry has not changed significantly throughout the observational record. The variability of the inter-hemispheric difference in reflected solar radiation (asymmetry) is strongly determined by tropical and subtropical cloud cover, particularly those related to non-neutral phases of the El Niño-Southern Oscillation (ENSO). As the ENSO is the most significant source of interannual variability in reflected radiation on a global scale, this underscores the inter-hemispheric albedo symmetry as a robust feature of Earth’s current annual mean climate. Comparing this feature in observations with simulations from coupled models reveals that the degree of modeled albedo symmetry is mostly dependent on biases in reflected radiation in the midlatitudes, and that models that overestimate its variability the most have larger biases in reflected radiation in the tropics. The degree of model albedo symmetry is improved when driven with historical sea surface temperatures, indicating that the degree of symmetry in Earth’s albedo is dependent on the representation of cloud responses to coupled ocean-atmosphere processes.


2021 ◽  
Author(s):  
Lian-Yi Zhang ◽  
Yan Du ◽  
Wenju Cai ◽  
Zesheng Chen ◽  
Tomoki Tozuka ◽  
...  

<p>This study identifies a new triggering mechanism of the Indian Ocean Dipole (IOD) from the Southern Hemisphere. This mechanism is independent from the El Niño/Southern Oscillation (ENSO) and tends to induce the IOD before its canonical peak season. The joint effects of this mechanism and ENSO may explain different lifetimes and strengths of the IOD. During its positive phase, development of sea surface temperature cold anomalies commences in the southern Indian Ocean, accompanied by an anomalous subtropical high system and anomalous southeasterly winds. The eastward movement of these anomalies enhances the monsoon off Sumatra-Java during May-August, leading to an early positive IOD onset. The pressure variability in the subtropical area is related with the Southern Annular Mode, suggesting a teleconnection between high-latitude and mid-latitude climate that can further affect the tropics. To include the subtropical signals may help model prediction of the IOD event.</p>


2020 ◽  
Author(s):  
Paolo Ruggieri ◽  
Stefano Materia ◽  
Angel G. Muñoz ◽  
M.Carmen Alvarez Castro ◽  
Simon J. Mason ◽  
...  

<p>Producing probabilistic subseasonal forecasts of extreme events up to six weeks in advance is crucial for many economic sectors. In agribusiness, this time-scale is particularly critical because it allows for mitigation strategies to be adopted for counteracting weather hazards and taking advantage of opportunities.<br>For example, spring frosts are detrimental for many nut trees, resulting in dramatic losses at harvest time. To explore subseasonal forecast quality in boreal spring, identified as one of the most sensitive times of the year by agribusiness end-users, we build a multi-system ensemble using four models involved in the Subseasonal-to-Seasonal (S2S) Prediction Project. Two-meter temperature forecasts are used to analyze cold spell predictions in the coastal Black Sea region, an area that is a global leader in the production of hazelnuts. When analyzed at global scale, the multi-system ensemble probabilistic forecasts for near-surface temperature is better than climatological values for several regions, especially the Tropics, even many weeks in advance; however, in coastal Black Sea skill is low after the second forecast week. When cold spells are predicted instead of near-surface temperatures, skill improves for the region, and the forecasts prove to contain potentially useful information to stakeholders willing to put mitigation plans into effect. Using a cost-loss model approach for the first time in this context, we show that there is added value of having such a forecast system instead of a business-as-usual strategy, not only for predictions released one to two weeks ahead of the extreme event, but also at longer lead-times.</p>


2005 ◽  
Vol 18 (6) ◽  
pp. 757-771 ◽  
Author(s):  
Joseph Egger ◽  
Klaus-Peter Hoinka

Abstract Earlier analyses of the annual cycle of the axial angular momentum (AAM) are extended to include mass flows and vertical transports as observed, and to establish angular momentum budgets for various control volumes, using the European Centre for Medium-Range Forecasts (ECMWF) Re-Analyses (ERA) for the years 1979–92, transformed to height coordinates. In particular, the role of the torques is examined. The annual cycle of the zonally averaged angular momentum is large in the latitude belt 20° ⩽ |ϕ| ⩽ 45°, with little attenuation in the vertical up to a height of ∼12 km. The oscillation of the mass term (AAM due to the earth’s rotation) dominates in the lower troposphere, but that of the wind term (relative AAM) is more important elsewhere. The cycle of the friction torque as related to the trade winds prevails in the Tropics. Mountain torque and friction torque are equally important in the extratropical latitudes of the Northern Hemisphere. The annual and the semiannual cycle of the global angular momentum are in good balance with the global mountain and friction torques. The addition of the global gravity wave torque destroys this agreement. The transports must be adjusted if budgets of domains of less than global extent are to be considered. Both a streamfunction, representing the nondivergent part of the fluxes, and a flux potential, describing the divergences/convergences, are determined. The streamfunction pattern mainly reflects the seasonal shift of the Hadley cell. The flux potential links the annual oscillations of the angular momentum with the torques. It is concluded that the interaction of the torques with the angular momentum is restricted to the lower troposphere, in particular, in the Tropics. The range of influence is deeper in the Northern Hemisphere than in the Southern Hemisphere, presumably because of the mountains. The angular momentum cycle in the upper troposphere and stratosphere is not affected by the torques and reflects interhemispheric flux patterns. Budgets for the polar as well as for the midlatitude domains show that fluxes in the stratosphere are important.


Sign in / Sign up

Export Citation Format

Share Document