Soil moisture and the water cycle in the UK Climate Projections

Author(s):  
Jennifer Pirret ◽  
Fai Fung ◽  
John. F.B. Mitchell ◽  
Rachel McInnes

<p>Soil moisture is a key environmental factor for plant cultivation: too little and plant growth is restricted due to drought conditions; too much and soil becomes water-logged. It is important to understand how well climate models can represent current soil moisture processes as well as how soil moisture will respond to a changing climate, to inform adaptation of plant cultivation to future climate change. We explore current and future climate soil moisture conditions alongside water cycle processes such as evaporation and run-off in the latest UK Climate Projections (UKCP). Three model ensembles are available: UKCP Global, Regional and Local, with horizontal resolutions of 60km, 12km and 2.2km respectively. These each contain the Joint UK Land Environment Simulator (JULES) model as their land surface component. This suite of models offers the opportunity to understand the effects of parameter uncertainty and spatial resolution. Firstly, we assess the performance of the Global and Regional simulations by evaluating results from the baseline period (1981-2010) in terms of soil moisture (and the overall water balance) by comparing it to observations and to JULES driven by observations. Secondly, we assess how the water balance responds to a high future greenhouse gas concentration pathway. We find that soil moisture is likely to be lower in the summer and early autumn and spends a longer time below levels optimal for plant growth. The potential drivers of this change are explored, including future changes in precipitation and evaporation.</p>

Atmosphere ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 602 ◽  
Author(s):  
Yang ◽  
Wang ◽  
Huang

The warming climate significantly modifies the global water cycle. Global evapotranspiration has increased over the past decades, yet climate models agree on the drying trend of land surface. In this study, we conducted an intercomparison analysis of the surface energy partitioning across Coupled Model Intercomparison Phase 5 (CMIP5) simulations and evaluated its behaviour with surface temperature and soil moisture anomalies, against the theoretically derived thermodynamic formula. Different responses over land and sea surfaces to elevated greenhouse gas emissions were found. Under the Representative Concentration Pathway of +8.5 W m−2 (RCP8.5) warming scenario, the multi-model mean relative efficiency anomaly from CMIP5 simulations is 3.83 and −0.12 over global sea and land, respectively. The significant anomaly over sea was captured by the thermodynamic solution based on the principle of maximum entropy production, with a mean relative error of 14.6%. The declining trend over land was also reproduced, but an accurate prediction of its small anomaly will require the inclusions of complex physical processes in future work. Despite increased potential evapotranspiration under rising temperatures, both CMIP5 simulations and thermodynamic principles suggest that the soil moisture-temperature feedback cannot support long-term enhanced evapotranspiration at the global scale. The dissipation of radiative forcing eventually shifts towards sensible heat flux and accelerates the warming over land, especially over South America and Europe.


2021 ◽  
Author(s):  
Kate Halladay ◽  
Segolene Berthou ◽  
Elizabeth Kendon

<p>Increasingly, we are using high-resolution convection-permitting models for climate projections but these models are less well understood in terms of the interaction between soil moisture, precipitation and evapotranspiration. The work was motivated by the discovery of warm, dry biases in summer in the 2.2 km convection-permitting model over France and eastern Europe compared to the 12 km convection-parametrised model that were associated with drier soils. We analyse several 12 km and 2.2 km versions of the Met Office Unified Model including sensitivity tests relating to soil hydraulics, land cover type and runoff model. We conduct similar tests using the land surface only to compare results between online and offline versions as the absence of some feedbacks can also produce differences.  </p>


2021 ◽  
Author(s):  
Michael Byrne

<p>Extreme temperatures have warmed substantially over recent decades and are projected to continue warming in response to future climate change. Warming of extreme temperatures is amplified over land where the impacts on human health, wildfire risk and food production are most severe. Using simulations with climate models, I show that hot days over tropical land warm substantially more than the average day. For example, warming of the hottest 1% of land days is 24% larger than the time-mean warming averaged across models. The climate-change response of extreme temperatures over tropical land is interpreted using a theory based on atmospheric dynamics. According to the theory, warming is amplified for hot land days because those days are dry: I term this the "drier get hotter" mechanism. Changes in near-surface relative humidity further increase tropical land warming , with decreases in land relative humidity particularly important. The theory advances physical understanding of the tropical climate and highlights land-surface dryness as a key factor determining how extreme temperatures will respond to future climate change.</p>


2016 ◽  
Vol 20 (5) ◽  
pp. 1947-1969 ◽  
Author(s):  
Marzena Osuch ◽  
Renata J. Romanowicz ◽  
Deborah Lawrence ◽  
Wai K. Wong

Abstract. Possible future climate change effects on dryness conditions in Poland are estimated for six climate projections using the standardized precipitation index (SPI). The time series of precipitation represent six different climate model runs under the selected emission scenario for the period 1971–2099. Monthly precipitation values were used to estimate the SPI for multiple timescales (1, 3, 6, 12, and 24 months) for a spatial resolution of 25 km for the whole country. Trends in the SPI were analysed using the Mann–Kendall test with Sen's slope estimator for each grid cell for each climate model projection and aggregation scale, and results obtained for uncorrected precipitation and bias corrected precipitation were compared. Bias correction was achieved using a distribution-based quantile mapping (QM) method in which the climate model precipitation series were adjusted relative to gridded precipitation data for Poland. The results show that the spatial pattern of the trend depends on the climate model, the timescale considered and on the bias correction. The effect of change on the projected trend due to bias correction is small compared to the variability among climate models. We also summarize the mechanisms underlying the influence of bias correction on trends in precipitation and the SPI using a simple example of a linear bias correction procedure. In both cases, the bias correction by QM does not change the direction of changes but can change the slope of trend, and the influence of bias correction on SPI is much reduced. We also have noticed that the results for the same global climate model, driving different regional climate model, are characterized by a similar pattern of changes, although this behaviour is not seen at all timescales and seasons.


2021 ◽  
Vol 29 (7) ◽  
pp. 2411-2428
Author(s):  
Robin K. Weatherl ◽  
Maria J. Henao Salgado ◽  
Maximilian Ramgraber ◽  
Christian Moeck ◽  
Mario Schirmer

AbstractLand-use changes often have significant impact on the water cycle, including changing groundwater/surface-water interactions, modifying groundwater recharge zones, and increasing risk of contamination. Surface runoff in particular is significantly impacted by land cover. As surface runoff can act as a carrier for contaminants found at the surface, it is important to characterize runoff dynamics in anthropogenic environments. In this study, the relationship between surface runoff and groundwater recharge in urban areas is explored using a top-down water balance approach. Two empirical models were used to estimate runoff: (1) an updated, advanced method based on curve number, followed by (2) bivariate hydrograph separation. Modifications were added to each method in an attempt to better capture continuous soil-moisture processes and explicitly account for runoff from impervious surfaces. Differences between the resulting runoff estimates shed light on the complexity of the rainfall–runoff relationship, and highlight the importance of understanding soil-moisture dynamics and their control on hydro(geo)logical responses. These results were then used as input in a water balance to calculate groundwater recharge. Two approaches were used to assess the accuracy of these groundwater balance estimates: (1) comparison to calculations of groundwater recharge using the calibrated conceptual HBV Light model, and (2) comparison to groundwater recharge estimates from physically similar catchments in Switzerland that are found in the literature. In all cases, recharge is estimated at approximately 40–45% of annual precipitation. These conditions were found to closely echo those results from Swiss catchments of similar characteristics.


2021 ◽  
Vol 164 (3-4) ◽  
Author(s):  
Seshagiri Rao Kolusu ◽  
Christian Siderius ◽  
Martin C. Todd ◽  
Ajay Bhave ◽  
Declan Conway ◽  
...  

AbstractUncertainty in long-term projections of future climate can be substantial and presents a major challenge to climate change adaptation planning. This is especially so for projections of future precipitation in most tropical regions, at the spatial scale of many adaptation decisions in water-related sectors. Attempts have been made to constrain the uncertainty in climate projections, based on the recognised premise that not all of the climate models openly available perform equally well. However, there is no agreed ‘good practice’ on how to weight climate models. Nor is it clear to what extent model weighting can constrain uncertainty in decision-relevant climate quantities. We address this challenge, for climate projection information relevant to ‘high stakes’ investment decisions across the ‘water-energy-food’ sectors, using two case-study river basins in Tanzania and Malawi. We compare future climate risk profiles of simple decision-relevant indicators for water-related sectors, derived using hydrological and water resources models, which are driven by an ensemble of future climate model projections. In generating these ensembles, we implement a range of climate model weighting approaches, based on context-relevant climate model performance metrics and assessment. Our case-specific results show the various model weighting approaches have limited systematic effect on the spread of risk profiles. Sensitivity to climate model weighting is lower than overall uncertainty and is considerably less than the uncertainty resulting from bias correction methodologies. However, some of the more subtle effects on sectoral risk profiles from the more ‘aggressive’ model weighting approaches could be important to investment decisions depending on the decision context. For application, model weighting is justified in principle, but a credible approach should be very carefully designed and rooted in robust understanding of relevant physical processes to formulate appropriate metrics.


Climate ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Suzanna Meeussen ◽  
Anouschka Hof

Climate change is expected to have an impact on the geographical distribution ranges of species. Endemic species and those with a restricted geographic range may be especially vulnerable. The Persian jird (Meriones persicus) is an endemic rodent inhabiting the mountainous areas of the Irano-Turanian region, where future desertification may form a threat to the species. In this study, the species distribution modelling algorithm MaxEnt was used to assess the impact of future climate change on the geographic distribution range of the Persian jird. Predictions were made under two Representative Concentration Pathways and five different climate models for the years 2050 and 2070. It was found that both bioclimatic variables and land use variables were important in determining potential suitability of the region for the species to occur. In most cases, the future predictions showed an expansion of the geographic range of the Persian jird which indicates that the species is not under immediate threat. There are however uncertainties with regards to its current range. Predictions may therefore be an over or underestimation of the total suitable area. Further research is thus needed to confirm the current geographic range of the Persian jird to be able to improve assessments of the impact of future climate change.


2021 ◽  
Author(s):  
Brandi Gamelin ◽  
Jiali Wang ◽  
V. Rao Kotamarthi

<p>Flash droughts are the rapid intensification of drought conditions generally associated with increased temperatures and decreased precipitation on short time scales.  Consequently, flash droughts are responsible for reduced soil moisture which contributes to diminished agricultural yields and lower groundwater levels. Drought management, especially flash drought in the United States is vital to address the human and economic impact of crop loss, diminished water resources and increased wildfire risk. In previous research, climate change scenarios show increased growing season (i.e. frost-free days) and drying in soil moisture over most of the United States by 2100. Understanding projected flash drought is important to assess regional variability, frequency and intensity of flash droughts under future climate change scenarios. Data for this work was produced with the Weather Research and Forecasting (WRF) model. Initial and boundary conditions for the model were supplied by CCSM4, GFDL-ESM2G, and HadGEM2-ES and based on the 8.5 Representative Concentration Pathway (RCP8.5). The WRF model was downscaled to a 12 km spatial resolution for three climate time frames: 1995-2004 (Historical), 2045-2054 (Mid), and 2085-2094 (Late).  A key characteristic of flash drought is the rapid onset and intensification of dry conditions. For this, we identify onset with vapor pressure deficit during each time frame. Known flash drought cases during the Historical run are identified and compared to flash droughts in the Mid and Late 21<sup>st</sup> century.</p>


2021 ◽  
Author(s):  
Giovanni Di Virgilio ◽  
Jason P. Evans ◽  
Alejandro Di Luca ◽  
Michael R. Grose ◽  
Vanessa Round ◽  
...  

<p>Coarse resolution global climate models (GCM) cannot resolve fine-scale drivers of regional climate, which is the scale where climate adaptation decisions are made. Regional climate models (RCMs) generate high-resolution projections by dynamically downscaling GCM outputs. However, evidence of where and when downscaling provides new information about both the current climate (added value, AV) and projected climate change signals, relative to driving data, is lacking. Seasons and locations where CORDEX-Australasia ERA-Interim and GCM-driven RCMs show AV for mean and extreme precipitation and temperature are identified. A new concept is introduced, ‘realised added value’, that identifies where and when RCMs simultaneously add value in the present climate and project a different climate change signal, thus suggesting plausible improvements in future climate projections by RCMs. ERA-Interim-driven RCMs add value to the simulation of summer-time mean precipitation, especially over northern and eastern Australia. GCM-driven RCMs show AV for precipitation over complex orography in south-eastern Australia during winter and widespread AV for mean and extreme minimum temperature during both seasons, especially over coastal and high-altitude areas. RCM projections of decreased winter rainfall over the Australian Alps and decreased summer rainfall over northern Australia are collocated with notable realised added value. Realised added value averaged across models, variables, seasons and statistics is evident across the majority of Australia and shows where plausible improvements in future climate projections are conferred by RCMs. This assessment of varying RCM capabilities to provide realised added value to GCM projections can be applied globally to inform climate adaptation and model development.</p>


Sign in / Sign up

Export Citation Format

Share Document