scholarly journals In-cloud scavenging scheme for aerosol modules

2020 ◽  
Author(s):  
Eemeli Holopainen ◽  
Harri Kokkola ◽  
Anton Laakso ◽  
Thomas Kühn

Abstract. In this study we introduce an in-cloud wet deposition scheme for liquid and ice phase clouds for global aerosol-climate models which use a size-segregated aerosol description. For in-cloud nucleation scavenging, the scheme uses cloud droplet activation and ice nucleation rates obtained from the host model. For in-cloud impaction scavenging, we used a method where the removal rate depends on the aerosol size and cloud droplet radii. The scheme was compared to a scheme that uses fixed scavenging coefficients. The comparison included vertical profiles and mass and number distributions of wet deposition fluxes of different aerosol compounds and for different latitude bands. Using the scheme presented here, mass concentrations for black carbon, organic carbon, sulfate, and the number concentration of particles with diameters larger than 100 nm are higher than using fixed scavenging coefficients, with the largest differences in the vertical profiles in the Arctic. On the other hand, the number concentrations of small particles show a decrease, especially in the Arctic region. These results indicate that, compared to using fixed scavenging coefficients, nucleation scavenging is less efficient and impaction scavenging is increased in the scheme introduced here. Without further adjustments in the host model, our wet deposition scheme produced unrealistically high aerosol concentrations, especially at high altitudes. This also leads to a spuriously long lifetime of black carbon aerosol. To find a better setup for simulating aerosol vertical profiles and transport, sensitivity simulations were conducted where aerosol emission distribution and hygroscopicity were altered. The simulated vertical profiles of aerosol in these sensitivity studies were evaluated against aircraft observations. The lifetimes of different aerosol compounds were also evaluated against the ensemble mean of models involved in the Aerosol Comparisons between Observations and Models (AEROCOM) project. The best comparison between the observations and the model was achieved with the new wet deposition scheme when black carbon was emitted internally mixed with soluble compounds instead of keeping it externally mixed. This also produced atmospheric lifetimes for the other species which were comparable to the AEROCOM model means.

2020 ◽  
Vol 13 (12) ◽  
pp. 6215-6235
Author(s):  
Eemeli Holopainen ◽  
Harri Kokkola ◽  
Anton Laakso ◽  
Thomas Kühn

Abstract. In this study we introduce an in-cloud wet deposition scheme for liquid and ice phase clouds for global aerosol–climate models which use a size-segregated aerosol description. For in-cloud nucleation scavenging, the scheme uses cloud droplet activation and ice nucleation rates obtained from the host model. For in-cloud impaction scavenging, we used a method where the removal rate depends on the wet aerosol size and cloud droplet radii. We used the latest release version of ECHAM-HAMMOZ (ECHAM6.3-HAM2.3-MOZ1.0) with the Sectional Aerosol module for Large Scale Applications version 2.0 (SALSA) microphysics package to test and compare our scheme. The scheme was compared to a scheme that uses fixed scavenging coefficients. The comparison included vertical profiles and mass and number distributions of wet deposition fluxes of different aerosol compounds and for different latitude bands. Using the scheme presented here, mass concentrations for black carbon, organic carbon, sulfate, and the number concentration of particles with diameters larger than 100 nm are higher than using fixed scavenging coefficients, with the largest differences in the vertical profiles in the Arctic. On the other hand, the number concentrations of particles smaller than 100 nm in diameter show a decrease, especially in the Arctic region. These results could indicate that, compared to fixed scavenging coefficients, nucleation scavenging is less efficient, resulting in an increase in the number concentration of particles larger than 100 nm. In addition, changes in rates of impaction scavenging and new particle formation (NPF) can be the main cause of reduction in the number concentrations of particles smaller than 100 nm. Without further adjustments in the host model, our wet deposition scheme produced unrealistically high aerosol concentrations, especially at high altitudes. This also leads to a spuriously long lifetime of black carbon aerosol. To find a better setup for simulating aerosol vertical profiles and transport, sensitivity simulations were conducted where aerosol emission distribution and hygroscopicity were altered. Vertical profiles of aerosol species simulated with the scheme which uses fixed scavenging rates and the abovementioned sensitivity simulations were evaluated against vertical profiles from aircraft observations. The lifetimes of different aerosol compounds were also evaluated against the ensemble mean of models involved in the Aerosol Comparisons between Observations and Models (AEROCOM) project. The best comparison between the observations and the model was achieved with our wet deposition scheme when black carbon was emitted internally mixed with soluble compounds instead of keeping it externally mixed. This also produced atmospheric lifetimes for the other species which were comparable to the AEROCOM model means.


2021 ◽  
Author(s):  
Eemeli Holopainen ◽  
Harri Kokkola ◽  
Anton Laakso ◽  
Thomas Kühn

<p><span>Black carbon (BC) affects the radiation budget of the Earth by absorbing solar radiation, darkening snow and ice covers, and influencing cloud formation and life cycle. Modelling BC in remote regions, such as the Arctic, has large inter-model variability which causes variation in the modelled aerosol effect over the Arctic. This variability can be due to differences in the transport of aerosol species which is affected by how wet deposition is modelled. </span></p><p><span> In this study we developed an aerosol size-resolved in-cloud wet deposition scheme for liquid and ice clouds for models which use a size-segregated aerosol description. This scheme was tested in the ECHAM-HAMMOZ global aerosol-climate model. The scheme was compared to the original wet deposition scheme which uses fixed scavenging coefficients for different sized particles. The comparison included vertical profiles and mass and number wet deposition fluxes, and it showed that the current scheme produced spuriously long BC lifetimes when compared to the estimates made in other studies. Thus, to find a better setup for simulating aerosol lifetimes and vertical profiles we conducted simulations where we altered the aerosol emission distribution and hygroscopicity.</span></p><p><span> We compared the modelled BC vertical profiles to the ATom aircraft campaign measurements. In addition, we compared the aerosol lifetimes against those from AEROCOM model means. We found that, without further tuning, the current scheme overestimates the BC concentrations and lifetimes more than the fixed scavenging scheme when compared to the measurements. Sensitivity studies showed that the model skill of reproducing the measured vertical BC mass concentrations improved when BC emissions were directed to larger size classes, they were mixed with soluble compounds during emission, or BC-containing particles were transferred to soluble size classes after aging. These changes also produced atmospheric BC lifetimes which were closer to AEROCOM model means. The best comparison with the measured vertical profiles and estimated BC lifetimes was when BC was mixed with soluble aerosol compounds during emission.</span></p>


2016 ◽  
Author(s):  
Marianne T. Lund ◽  
Terje K. Berntsen ◽  
Bjørn H. Samset

Abstract. Despite recent improvements, significant uncertainties in global modeling of black carbon (BC) aerosols persist, posing important challenges for the design and evaluation of effective climate mitigation strategies targeted at BC emission reductions. Here we investigate the sensitivity of BC concentrations in the chemistry-transport model OsloCTM2 with the microphysical aerosol parameterization M7 (OsloCTM2-M7) to parameters controlling aerosol aging and scavenging. We focus on Arctic surface concentrations and remote region BC vertical profiles, and introduce a novel treatment of condensation of nitric acid on BC. The OsloCTM2-M7 underestimates annual averaged BC surface concentrations, with a mean normalized bias of −0.55. The seasonal cycle and magnitude of Arctic BC surface concentrations is improved compared to previous OsloCTM2 studies, but model-measurement discrepancies during spring remain. High-altitude BC over the Pacific is overestimated compared with measurements from the HIPPO campaigns. We find that a shorter global BC lifetime improves the agreement with HIPPO, in line with other recent studies. Several processes can achieve this, including allowing for convective scavenging of hydrophobic BC and reducing the amount of soluble material required for aging. Simultaneously, the concentrations in the Arctic are reduced, resulting in poorer agreement with measurements in part of the region. A first step towards inclusion of aging by nitrate in OsloCTM2-M7 is made by allowing for condensation of nitric acid on BC. This results in a faster aging and reduced lifetime, and in turn to a better agreement with the HIPPO measurements. On the other hand, model-measurement discrepancies in the Arctic are exacerbated. Work to further improve this parameterization is needed. The impact on global mean radiative forcing (RF) and surface temperature response (TS) in our experiments is estimated. Compared to the baseline, decreases in global mean direct RF on the order of 10–30 % of the total pre-industrial to present BC direct RF is estimated for the experiments that result in the largest changes in BC concentrations. We show that globally tuning parameters related to BC aging and scavenging can improve the representation of BC vertical profiles in the OsloCTM2-M7 compared with observations. Our results also show that such improvements can result from changes in several processes and often depend on assumptions about uncertain parameters such as the BC ice nucleating efficiency and the change in hygroscopicity with aging. It is also important to be aware of potential tradeoffs in model performance between different regions. Other important sources of uncertainty, particularly for Arctic BC, such as model resolution has not been investigated here. Our results underline the importance of more observations and experimental data to improve process understanding and thus further constrain models.


2010 ◽  
Vol 10 (6) ◽  
pp. 15167-15196
Author(s):  
J. R. Spackman ◽  
R. S. Gao ◽  
W. D. Neff ◽  
J. P. Schwarz ◽  
L. A. Watts ◽  
...  

Abstract. Understanding the processes controlling black carbon (BC) in the Arctic is crucial for evaluating the impact of anthropogenic and natural sources of BC on Arctic climate. Vertical profiles of BC mass were observed from the surface to near 7-km altitude in April 2008 using a Single-Particle Soot Photometer (SP2) during flights on the NOAA WP-3D research aircraft from Fairbanks, Alaska. These measurements were conducted during the NOAA-sponsored Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) project as part of POLARCAT, an International Polar Year (IPY) activity. In the free troposphere, the Arctic air mass was influenced by long-range transport from biomass-burning and anthropogenic source regions at lower latitudes especially during the latter part of the campaign. Maximum average BC mass loadings of 150 ng kg−1 were observed near 5.5-km altitude in the aged Arctic air mass. In biomass-burning plumes, BC was enhanced from near the top of the Arctic boundary layer (ABL) to 5.5 km compared to the aged Arctic air mass. At the bottom of some of the profiles, positive vertical gradients in BC were observed in the vicinity of open leads in the sea-ice. BC mass loadings increased by about a factor of two across the boundary layer transition in the ABL in these cases while carbon monoxide (CO) remained constant, evidence for depletion of BC in the ABL. BC mass loadings were positively correlated with O3 in ozone depletion events (ODEs) for all the observations in the ABL suggesting that BC was removed by dry deposition of BC on the snow or ice because molecular bromine, Br2, which photolyzes and catalytically destroys O3, is thought to be released near the open leads in regions of ice formation. We estimate the deposition flux of BC mass to the snow using a box model constrained by the vertical profiles of BC in the ABL. The open leads may increase vertical mixing in the ABL and entrainment of pollution from the free troposphere possibly enhancing the deposition of BC to the snow.


2019 ◽  
Author(s):  
W. Richard Leaitch ◽  
John K. Kodros ◽  
Megan D. Willis ◽  
Sarah Hanna ◽  
Hannes Schulz ◽  
...  

Abstract. Despite the potential importance of black carbon (BC) to radiative forcing of the Arctic atmosphere, vertically-resolved measurements of the particle light scattering coefficient (Bsp) and light absorption coefficient (Bap) in the springtime Arctic atmosphere are infrequent, especially measurements at latitudes at or above 80oN. Here, relationships among vertically-distributed aerosol optical properties Bap, Bsp, and single scattering albedo or SSA), particle microphysics and particle chemistry are examined for a region of the Canadian archipelago between 79.9oN and 83.4oN from near the surface to 500 hPa. Airborne data collected during April, 2015, are combined with ground-based observations from the observatory at Alert, Nunavut and simulations from the GEOS-Chem-TOMAS model (Kodros et al., 2018) to increase our knowledge of the effects of BC on light absorption in the Arctic troposphere. The results are constrained for Bsp less than 15 Mm-1, which represent 98% of the observed Bsp, because the single scattering albedo (SSA) has a tendency to be lower at lower Bsp, resulting in a larger relative contribution to Arctic warming. At 18.4 m2 g-1, the average BC mass absorption coefficient (MAC) from the combined airborne and Alert observations is substantially higher than the two averaged modelled MAC values (9.5 m2 g-1 and 7.0 m2 g-1) for two different internal mixing assumptions, the latter of which is based on previous observations. The higher observed MAC value may be explained by an underestimation of BC and possible differences in BC microphysics and morphologies between the observations and model. We present Bap and SSA based on the assumption that Bap is overestimated in the observations in addition to the assumption that the higher MAC is explained. Median values of the measured Bap, rBC and organic component of particles all increase by a factor of 1.8±0.1 going from near-surface to 750 hPa, and values higher than the surface persist to 600 hPa. Modelled BC, organics, and Bap agree with the near-surface measurements, but do not reproduce the higher values observed between 900 hPa and 600 hPa. The differences between modelled and observed optical properties follow the same trend as the differences between the modelled and observed concentrations of the carbonaceous components (black and organic). Some discrepancies in the model may be due to the use of a relatively low imaginary refractive index of BC as well as by the ejection of biomass burning particles only into the boundary layer at sources. For the assumption of the higher observed MAC value, the SSA range between 0.88 and 0.94, which is significantly lower than other recent estimates for the Arctic, in part reflecting the constraint of Bsp <15 Mm-1. The large uncertainties in measuring optical properties and BC as well as the large differences between measured and modelled values, here and in the literature, argue for improved measurements of BC and light absorption by BC as well as more vertical profiles of aerosol chemistry, microphysics, and other optical properties in the Arctic.


2019 ◽  
Author(s):  
Hans-Werner Jacobi ◽  
Friedrich Obleitner ◽  
Sophie Da Costa ◽  
Patrick Ginot ◽  
Kostas Eleftheriadis ◽  
...  

Abstract. Although aerosols in the Arctic have multiple and complex impacts on the regional climate, their removal due to deposition is still not well quantified. We combined meteorological, aerosol, precipitation, and snow pack observations with simulations to derive information about the deposition of sea salt components and black carbon (BC) from November 2011 to April 2012 to the Arctic snow pack at two locations close to Ny-Ålesund, Svalbard. The dominating role of sea salt and the contribution of dust for the composition of atmospheric aerosols were reflected in the seasonal composition of the snow pack. The strong alignment of the concentrations of the major sea salt components in the aerosols, the precipitation, and the snow pack is linked to the importance of wet deposition for the transfer from the atmosphere to the snow pack. This agreement was less strong for monthly snow budgets and deposition indicating important relocation of the impurities inside the snow pack after deposition. Wet deposition was less important for the transfer of nitrate, non sea salt-sulfate, and BC to the snow during the winter period. The average BC concentration in the snow pack remains small with a limited impact on snow albedo and melting. Nevertheless, the observations also indicate an important redistribution of BC in the snowpack leading to layers with enhanced concentrations. The complex behavior of bromide due to modifications during the sea salt aerosol formation and remobilization in the atmosphere and in the snow were not resolved due to the lack of measurements in aerosols and precipitation.


2019 ◽  
Vol 19 (3) ◽  
pp. 1587-1603 ◽  
Author(s):  
Jiayu Xu ◽  
Jiachen Zhang ◽  
Junfeng Liu ◽  
Kan Yi ◽  
Songlin Xiang ◽  
...  

Abstract. Parameterizations that impact wet removal of black carbon (BC) remain uncertain in global climate models. In this study, we enhance the default wet deposition scheme for BC in the Community Earth System Model (CESM) to (a) add relevant physical processes that were not resolved in the default model and (b) facilitate understanding of the relative importance of various cloud processes on BC distributions. We find that the enhanced scheme greatly improves model performance against HIPPO observations relative to the default scheme. We find that convection scavenging, aerosol activation, ice nucleation, evaporation of rain or snow, and below-cloud scavenging dominate wet deposition of BC. BC conversion rates for processes related to in-cloud water–ice conversion (i.e., riming, the Bergeron process, and evaporation of cloud water sedimentation) are relatively smaller, but have large seasonal variations. We also conduct sensitivity simulations that turn off each cloud process one at a time to quantify the influence of cloud processes on BC distributions and radiative forcing. Convective scavenging is found to have the largest impact on BC concentrations at mid-altitudes over the tropics and even globally. In addition, BC is sensitive to all cloud processes over the Northern Hemisphere at high latitudes. As for BC vertical distributions, convective scavenging greatly influences BC fractions at different altitudes. Suppressing BC droplet activation in clouds mainly decreases the fraction of column BC below 5 km, whereas suppressing BC ice nucleation increases that above 10 km. During wintertime, the Bergeron process also significantly increases BC concentrations at lower altitudes over the Arctic. Our simulation yields a global BC burden of 85 Gg; corresponding direct radiative forcing (DRF) of BC estimated using the Parallel Offline Radiative Transfer (PORT) is 0.13 W m−2, much lower than previous studies. The range of DRF derived from sensitivity simulations is large, 0.09–0.33 W m−2, corresponding to BC burdens varying from 73 to 151 Gg. Due to differences in BC vertical distributions among each sensitivity simulation, fractional changes in DRF (relative to the baseline simulation) are always higher than fractional changes in BC burdens; this occurs because relocating BC in the vertical influences the radiative forcing per BC mass. Our results highlight the influences of cloud microphysical processes on BC concentrations and radiative forcing.


2021 ◽  
Vol 15 (5) ◽  
pp. 2255-2272
Author(s):  
Wei Pu ◽  
Tenglong Shi ◽  
Jiecan Cui ◽  
Yang Chen ◽  
Yue Zhou ◽  
...  

Abstract. When black carbon (BC) is mixed internally with other atmospheric particles, the BC light absorption effect is enhanced. This study explicitly resolved the optical properties of coated BC in snow based on the core / shell Mie theory and the Snow, Ice, and Aerosol Radiative (SNICAR) model. Our results indicated that the BC coating effect enhances the reduction in snow albedo by a factor ranging from 1.1–1.8 for a nonabsorbing shell and 1.1–1.3 for an absorbing shell, depending on the BC concentration, snow grain radius, and core / shell ratio. We developed parameterizations of the BC coating effect for application to climate models, which provides a convenient way to accurately estimate the climate impact of BC in snow. Finally, based on a comprehensive set of in situ measurements across the Northern Hemisphere, we determined that the contribution of the BC coating effect to snow light absorption exceeds that of dust over northern China. Notably, high enhancements of snow albedo reduction due to the BC coating effect were found in the Arctic and Tibetan Plateau, suggesting a greater contribution of BC to the retreat of Arctic sea ice and Tibetan glaciers.


Eos ◽  
2017 ◽  
Author(s):  
Sarah Stanley

Long-term data of higher accuracy could help improve global climate models and reveal trends in black carbon’s influence on Arctic climate.


Sign in / Sign up

Export Citation Format

Share Document