scholarly journals GEOCLIM <i>reloaded</i> (v 1.0): a new coupled earth system model for past climate change

2010 ◽  
Vol 3 (4) ◽  
pp. 2109-2187
Author(s):  
S. Arndt ◽  
P. Regnier ◽  
Y. Goddéris ◽  
Y. Donnadieu

Abstract. We present a new version of the coupled Earth system model GEOCLIM. The new release, GEOCLIM reloaded, links the existing atmosphere and weathering modules to a novel, temporally and spatially resolved model of the global ocean circulation, which provides a physical framework for a mechanistic description of the marine biogeochemical dynamics of carbon, nitrogen, phosphorus and oxygen. The ocean model is also coupled to a fully formulated, vertically resolved diagenetic model. GEOCLIM reloaded is thus a unique tool to investigate the short- and long-term feedbacks between climatic conditions, continental inputs, ocean biogeochemical dynamics and diagenesis. A complete and detailed description of the resulting Earth system model and its new features is first provided. The performance of GEOCLIM reloaded is then evaluated by comparing steady-state simulation under present-day conditions with a comprehensive set of oceanic data and existing global estimates of bio-element cycling in the pelagic and benthic compartments.

2011 ◽  
Vol 4 (2) ◽  
pp. 451-481 ◽  
Author(s):  
S. Arndt ◽  
P. Regnier ◽  
Y. Goddéris ◽  
Y. Donnadieu

Abstract. We present a new version of the coupled Earth system model GEOCLIM. The new release, GEOCLIM reloaded (v 1.0), links the existing atmosphere and weathering modules to a novel, temporally and spatially resolved model of the global ocean circulation, which provides a physical framework for a mechanistic description of the marine biogeochemical dynamics of carbon, nitrogen, phosphorus and oxygen. The ocean model is also coupled to a fully formulated, vertically resolved diagenetic model. GEOCLIM reloaded is thus a unique tool to investigate the short- and long-term feedbacks between climatic conditions, continental inputs, ocean biogeochemical dynamics and diagenesis. A complete and detailed description of the resulting Earth system model and its new features is first provided. The performance of GEOCLIM reloaded is then evaluated by comparing steady-state simulation under present-day conditions with a comprehensive set of oceanic data and existing global estimates of bio-element cycling in the pelagic and benthic compartments.


2021 ◽  
Vol 17 (5) ◽  
pp. 2223-2254
Author(s):  
Katherine A. Crichton ◽  
Andy Ridgwell ◽  
Daniel J. Lunt ◽  
Alex Farnsworth ◽  
Paul N. Pearson

Abstract. Since the middle Miocene (15 Ma, million years ago), the Earth's climate has undergone a long-term cooling trend, characterised by a reduction in ocean temperatures of up to 7–8 ∘C. The causes of this cooling are primarily thought to be due to tectonic plate movements driving changes in large-scale ocean circulation patterns, and hence heat redistribution, in conjunction with a drop in atmospheric greenhouse gas forcing (and attendant ice-sheet growth and feedback). In this study, we assess the potential to constrain the evolving patterns of global ocean circulation and cooling over the last 15 Ma by assimilating a variety of marine sediment proxy data in an Earth system model. We do this by first compiling surface and benthic ocean temperature and benthic carbon-13 (δ13C) data in a series of seven time slices spaced at approximately 2.5 Myr intervals. We then pair this with a corresponding series of tectonic and climate boundary condition reconstructions in the cGENIE (“muffin” release) Earth system model, including alternative possibilities for an open vs. closed Central American Seaway (CAS) from 10 Ma onwards. In the cGENIE model, we explore uncertainty in greenhouse gas forcing and the magnitude of North Pacific to North Atlantic salinity flux adjustment required in the model to create an Atlantic Meridional Overturning Circulation (AMOC) of a specific strength, via a series of 12 (one for each tectonic reconstruction) 2D parameter ensembles. Each ensemble member is then tested against the observed global temperature and benthic δ13C patterns. We identify that a relatively high CO2 equivalent forcing of 1120 ppm is required at 15 Ma in cGENIE to reproduce proxy temperature estimates in the model, noting that this CO2 forcing is dependent on the cGENIE model's climate sensitivity and that it incorporates the effects of all greenhouse gases. We find that reproducing the observed long-term cooling trend requires a progressively declining greenhouse gas forcing in the model. In parallel to this, the strength of the AMOC increases with time despite a reduction in the salinity of the surface North Atlantic over the cooling period, attributable to falling intensity of the hydrological cycle and to lowering polar temperatures, both caused by CO2-driven global cooling. We also find that a closed CAS from 10 Ma to present shows better agreement between benthic δ13C patterns and our particular series of model configurations and data. A final outcome of our analysis is a pronounced ca. 1.5 ‰ decline occurring in atmospheric (and ca. 1 ‰ ocean surface) δ13C that could be used to inform future δ13C-based proxy reconstructions.


2016 ◽  
Vol 9 (11) ◽  
pp. 4209-4225 ◽  
Author(s):  
Xiaomeng Huang ◽  
Qiang Tang ◽  
Yuheng Tseng ◽  
Yong Hu ◽  
Allison H. Baker ◽  
...  

Abstract. In the Community Earth System Model (CESM), the ocean model is computationally expensive for high-resolution grids and is often the least scalable component for high-resolution production experiments. The major bottleneck is that the barotropic solver scales poorly at high core counts. We design a new barotropic solver to accelerate the high-resolution ocean simulation. The novel solver adopts a Chebyshev-type iterative method to reduce the global communication cost in conjunction with an effective block preconditioner to further reduce the iterations. The algorithm and its computational complexity are theoretically analyzed and compared with other existing methods. We confirm the significant reduction of the global communication time with a competitive convergence rate using a series of idealized tests. Numerical experiments using the CESM 0.1° global ocean model show that the proposed approach results in a factor of 1.7 speed-up over the original method with no loss of accuracy, achieving 10.5 simulated years per wall-clock day on 16 875 cores.


2017 ◽  
Vol 10 (12) ◽  
pp. 4723-4742 ◽  
Author(s):  
Sifan Gu ◽  
Zhengyu Liu

Abstract. The sediment 231Pa ∕ 230Th activity ratio is emerging as an important proxy for deep ocean circulation in the past. In order to allow for a direct model–data comparison and to improve our understanding of the sediment 231Pa ∕ 230Th activity ratio, we implement 231Pa and 230Th in the ocean component of the Community Earth System Model (CESM). In addition to the fully coupled implementation of the scavenging behavior of 231Pa and 230Th with the active marine ecosystem module (particle-coupled: hereafter p-coupled), another form of 231Pa and 230Th have also been implemented with prescribed particle flux fields of the present climate (particle-fixed: hereafter p-fixed). The comparison of the two forms of 231Pa and 230Th helps to isolate the influence of the particle fluxes from that of ocean circulation. Under present-day climate forcing, our model is able to simulate water column 231Pa and 230Th activity and the sediment 231Pa ∕ 230Th activity ratio in good agreement with available observations. In addition, in response to freshwater forcing, the p-coupled and p-fixed sediment 231Pa ∕ 230Th activity ratios behave similarly over large areas of low productivity on long timescales, but can differ substantially in some regions of high productivity and on short timescales, indicating the importance of biological productivity in addition to ocean transport. Therefore, our model provides a potentially powerful tool to help the interpretation of sediment 231Pa ∕ 230Th reconstructions and to improve our understanding of past ocean circulation and climate changes.


2021 ◽  
Author(s):  
Darin Comeau ◽  
Xylar Asay-Davis ◽  
Carolyn Begeman ◽  
Matthew Hoffman ◽  
Wuyin Lin ◽  
...  

&lt;p&gt;The processes responsible for freshwater flux from the Antarctic Ice Sheet (AIS) -- ice-shelf basal melting and iceberg calving -- are generally poorly represented in current Earth System Models (ESMs). Here, we document the first effort to date at simulating the ocean circulation and exchanges of heat and freshwater within ice-shelf cavities in a coupled ESM, the Department of Energy's Energy Exascale Earth System Model (E3SM). As a step towards full ice-sheet coupling, we implemented static Antarctic ice-shelf cavities and the ability to calculate ice-shelf basal melt rates from the heat and freshwater fluxes computed by the ocean model. In addition, we added the capability to prescribe forcing from iceberg melt, allowing us to realistically represent the other dominant mass loss process from the AIS. In global, low resolution (i.e., non-eddying ocean) simulations, we find high sensitivity of modeled ocean/ice shelf interactions to the ocean state, which can result in a tipping point to high melt regimes under certain ice shelves, presenting a significant challenge to representing the ocean/ice shelf system in a coupled ESM. We show that inclusion of a spatially dependent parameterization of eddy-induced transport reduces biases in water mass properties on the Antarctic continental shelf. With these improvements, E3SM produces realistic and stable ice-shelf basal melt rates across the continent under pre-industrial climate forcing. We also show preliminary results using an ocean/sea-ice grid that makes use of E3SM&amp;#8217;s regional-refinement capability, where increased resolution (down to 12km) is placed in the Southern Ocean around Antarctica, bypassing the need for parameterization of eddy-induced transport in this region. The accurate representation of these processes within a coupled ESM is an important step towards reducing uncertainties in projections of the Antarctic response to climate change and Antarctica's contribution to global sea-level rise.&lt;/p&gt;


2017 ◽  
Author(s):  
Sifan Gu ◽  
Zhengyu Liu ◽  
Alexandra Jahn ◽  
Johannes Rempfer ◽  
Jiaxu Zhang ◽  
...  

Abstract. Neodymium (Nd) isotope ratio (εNd) is a quasi-conservative water mass tracer and has been used increasingly as paleoclimate proxy to indicate the past evolution of ocean circulation. However, there are many uncertainties in interpreting εNd reconstructions. For the purposes of direct comparison between climate models and proxy reconstructions, we implement Nd isotopes (143Nd and 144Nd) in the ocean model of the Community Earth System Model (CESM). Two versions of Nd tracers are implemented: one is the "abiotic" Nd in which the particle fields are prescribed as the particle climatology generated by the marine ecosystem module of the CESM under present day forcing; the other is the "biotic" Nd that is coupled with the marine ecosystem module. Under present day climate forcing, our model is able to simulate both Nd concentrations and εNd in good agreement with available observations. Also, Nd concentration and εNd in our model show similar sensitivities to the total boundary source and the ratio between particle related Nd and dissolved Nd as in previous modeling study (Rempfer et al., 2011). Therefore, our Nd-enabled ocean model provides a promising tool to study past changes in ocean and climate.


2016 ◽  
Author(s):  
Xiaomeng Huang ◽  
Qiang Tang ◽  
Yuheng Tseng ◽  
Yong Hu ◽  
Allison H. Baker ◽  
...  

Abstract. In the Community Earth System Model (CESM), the ocean model is computationally expensive for high-resolution grids and is often the least scalable component for high-resolution production experiments. The major bottleneck is that the barotropic solver scales poorly at high core counts. We design a new barotropic solver to accelerate the high-resolution ocean simulation. The novel solver adopts a Chebyshev-type iterative method to reduce the global communication cost in conjunction with an effective block preconditioner to further reduce the iterations. The algorithm and its computational complexity are theoretically analyzed and compared with other existing methods. We confirm the significant reduction of the global communication time with a competitive convergence rate using a series of idealized tests. Experimental results obtained with the CESM 0.1° global ocean model show that the proposed approach results in a factor of 1.7 speed-up over the original method with no loss of accuracy, achieving 10.5 simulated years per wall-clock day on 16,875 cores.


2017 ◽  
Author(s):  
Sifan Gu ◽  
Zhengyu Liu

Abstract. Sediment 231Pa/230Th activity ratio is emerging as an important proxy for deep ocean circulation in the past. In order to allow for a direct model-data comparison and to improve our understanding of sediment 231Pa/230Th activity ratio, we implement 231Pa and 230Th in the ocean component of the Community Earth System Model (CESM). In addition to the biotic 231Pa and 230Th that is fully coupled with the active marine ecosystem module, another form of abiotic 231Pa and 230Th have also been implemented with prescribed particle flux fields of the present climate. The comparison of the two forms of 231Pa and 230Th helps to isolate the influence of the particle fluxes from that of circulation. Under present day climate forcing, our model is able to simulate water column 231Pa and 230Th activity and sediment 231Pa/230Th activity ratio in good agreement with available observations. For past climate, our model is able to simulate a comparable magnitude of the change of sediment 231Pa/230Th activity ratio between the state with and without active AMOC in reconstruction. In addition, in hosing experiments, the biotic and abiotic sediment 231Pa/230Th activity ratios behave similarly over large areas of low productivity, but can differ substantially in some regions of high productivity, indicating the importance of biological productivity in addition to physical circulation. Therefore, our model provides a potentially powerful tool to help our interpretation of sediment 231Pa/230Th reconstructions and to improve our understanding of past ocean circulation and climate changes.


2015 ◽  
Vol 12 (11) ◽  
pp. 3301-3320 ◽  
Author(s):  
K. B. Rodgers ◽  
J. Lin ◽  
T. L. Frölicher

Abstract. Marine ecosystems are increasingly stressed by human-induced changes. Marine ecosystem drivers that contribute to stressing ecosystems – including warming, acidification, deoxygenation and perturbations to biological productivity – can co-occur in space and time, but detecting their trends is complicated by the presence of noise associated with natural variability in the climate system. Here we use large initial-condition ensemble simulations with an Earth system model under a historical/RCP8.5 (representative concentration pathway 8.5) scenario over 1950–2100 to consider emergence characteristics for the four individual and combined drivers. Using a 1-standard-deviation (67% confidence) threshold of signal to noise to define emergence with a 30-year trend window, we show that ocean acidification emerges much earlier than other drivers, namely during the 20th century over most of the global ocean. For biological productivity, the anthropogenic signal does not emerge from the noise over most of the global ocean before the end of the 21st century. The early emergence pattern for sea surface temperature in low latitudes is reversed from that of subsurface oxygen inventories, where emergence occurs earlier in the Southern Ocean. For the combined multiple-driver field, 41% of the global ocean exhibits emergence for the 2005–2014 period, and 63% for the 2075–2084 period. The combined multiple-driver field reveals emergence patterns by the end of this century that are relatively high over much of the Southern Ocean, North Pacific, and Atlantic, but relatively low over the tropics and the South Pacific. For the case of two drivers, the tropics including habitats of coral reefs emerges earliest, with this driven by the joint effects of acidification and warming. It is precisely in the regions with pronounced emergence characteristics where marine ecosystems may be expected to be pushed outside of their comfort zone determined by the degree of natural background variability to which they are adapted. The results underscore the importance of sustained multi-decadal observing systems for monitoring multiple ecosystems drivers.


Sign in / Sign up

Export Citation Format

Share Document