scholarly journals The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall–runoff model for catchments with shallow groundwater

2014 ◽  
Vol 7 (1) ◽  
pp. 1357-1411 ◽  
Author(s):  
C. C. Brauer ◽  
A. J. Teuling ◽  
P. J. J. F. Torfs ◽  
R. Uijlenhoet

Abstract. We present the Wageningen Lowland Runoff Simulator (WALRUS), a novel rainfall–runoff model to fill the gap between complex, spatially distributed models which are often used in lowland catchments and simple, parametric (conceptual) models which have mostly been developed for mountainous catchments. WALRUS explicitly accounts for processes that are important in lowland areas, notably (1) groundwater-unsaturated zone coupling, (2) wetness-dependent flow routes, (3) groundwater-surface water feedbacks and (4) seepage and surface water supply. WALRUS consists of a coupled groundwater-vadose zone reservoir, a quickflow reservoir and a surface water reservoir. WALRUS is suitable for operational use because it is computationally efficient and numerically stable (achieved with a flexible time step approach). In the open source model code default relations have been implemented, leaving only four parameters which require calibration. For research purposes, these defaults can easily be changed. Numerical experiments show that the implemented feedbacks have the desired effect on the system variables.

2014 ◽  
Vol 7 (5) ◽  
pp. 2313-2332 ◽  
Author(s):  
C. C. Brauer ◽  
A. J. Teuling ◽  
P. J. J. F. Torfs ◽  
R. Uijlenhoet

Abstract. We present the Wageningen Lowland Runoff Simulator (WALRUS), a novel rainfall–runoff model to fill the gap between complex, spatially distributed models which are often used in lowland catchments and simple, parametric (conceptual) models which have mostly been developed for sloping catchments. WALRUS explicitly accounts for processes that are important in lowland areas, notably (1) groundwater–unsaturated zone coupling, (2) wetness-dependent flow routes, (3) groundwater–surface water feedbacks and (4) seepage and surface water supply. WALRUS consists of a coupled groundwater–vadose zone reservoir, a quickflow reservoir and a surface water reservoir. WALRUS is suitable for operational use because it is computationally efficient and numerically stable (achieved with a flexible time step approach). In the open source model code default relations have been implemented, leaving only four parameters which require calibration. For research purposes, these defaults can easily be changed. Numerical experiments show that the implemented feedbacks have the desired effect on the system variables.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1269 ◽  
Author(s):  
Yun Choi ◽  
Mun-Ju Shin ◽  
Kyung Kim

The choice of the computational time step (dt) value and the method for setting dt can have a bearing on the accuracy and performance of a simulation, and this effect has not been comprehensively researched across different simulation conditions. In this study, the effects of the fixed time step (FTS) method and the automatic time step (ATS) method on the simulated runoff of a distributed rainfall–runoff model were compared. The results revealed that the ATS method had less peak flow variability than the FTS method for the virtual catchment. In the FTS method, the difference in time step had more impact on the runoff simulation results than the other factors such as differences in the amount of rainfall, the density of the stream network, or the spatial resolution of the input data. Different optimal parameter values according to the computational time step were found when FTS and ATS were used in a real catchment, and the changes in the optimal parameter values were smaller in ATS than in FTS. The results of our analyses can help to yield reliable runoff simulation results.


2018 ◽  
Vol 13 (2) ◽  
pp. 115-130 ◽  
Author(s):  
Radhika Radhika ◽  
Rendy Firmansyah ◽  
Waluyo Hatmoko

Information on water availability is vital in water resources management. Unfortunately, information on the condition of hydrological data, either river flow data, or rainfall data is very limited temporally and spatially. With the availability of satellite technology, rainfall in the tropics can be monitored and recorded for further analysis. This paper discusses the calculation of surface water availability based on rainfall data from TRMM satellite, and then Wflow, a distributed rainfall-runoff model generates monthly time runoff data from 2003 to 2015 for all river basin areas in Indonesia. It is concluded that the average surface water availability in Indonesia is 88.3 thousand m3/s or equivalent to 2.78 trillion m3/ year. This figure is lower than the study of Water Resources Research Center 2010 based on discharge at the post estimated water that produces 3.9 trillion m3/year, but very close to the study of Aquastat FAO of 2.79 trillion m3 / year. The main benefit of this satellite-based calculation is that at any location in Indonesia, potential surface water can be obtained by multiplying the area of the catchment and the runoff height.


2012 ◽  
Vol 44 (3) ◽  
pp. 484-494 ◽  
Author(s):  
Satish Bastola ◽  
Conor Murphy

The effect of the time step of calibration data on the performance of a hydrological model is examined through a numerical experiment where HYMOD, a rainfall–runoff model, is calibrated with data of varying temporal resolution. A simple scaling relationship between the parameters of the model and modelling time step is derived which enables information from daily hydrological records to be used in modelling at time steps much shorter than daily. Model parameters were found to respond differently depending upon the degree of aggregation of calibration data. A loss in performance, especially in terms of the Nash–Sutcliffe measure, is evident when behavioural simulators derived with one modelling time step are used for simulation at another time step. The loss in performance is greater when parameters derived from a longer time step were used for simulating flow with a shorter time step. The application of a simple scaling relationship derived from a multi-time step model calibration significantly decreased the loss in model performance. Such an approach may offer the prospect of conducting higher temporal resolution flood frequency analysis when finer scale data for model calibration are not available or limited.


2006 ◽  
Vol 10 (6) ◽  
pp. 937-955 ◽  
Author(s):  
G. P. Zhang ◽  
H. H. G. Savenije ◽  
F. Fenicia ◽  
L. Pfister

Abstract. A new domain, the macropore domain describing subsurface storm flow, has been introduced to the Representative Elementary Watershed (REW) approach. The mass balance equations have been reformulated and the closure relations associated with subsurface storm flow have been developed. The model code, REWASH, has been revised accordingly. With the revised REWASH, a rainfall-runoff model has been built for the Hesperange catchment, a sub-catchment of the Alzette River Basin. This meso-scale catchment is characterised by fast catchment response to precipitation, and subsurface storm flow is one of the dominant runoff generation processes. The model has been evaluated by a multi-criteria approach using both discharge and groundwater table data measured at various locations in the study site. It is demonstrated that subsurface storm flow contributes considerably to stream flow in the study area. Simulation results show that discharges measured along the main river course are well simulated and groundwater dynamics is well captured, suggesting that the model is a useful tool for catchment-scale hydrological analysis.


2014 ◽  
Vol 11 (2) ◽  
pp. 2091-2148 ◽  
Author(s):  
C. C. Brauer ◽  
P. J. J. F. Torfs ◽  
A. J. Teuling ◽  
R. Uijlenhoet

Abstract. The Wageningen Lowland Runoff Simulator (WALRUS) is a new parametric (conceptual) rainfall-runoff model which accounts explicitly for processes that are important in lowland areas, such as groundwater-unsaturated zone coupling, wetness-dependent flowroutes, groundwater–surface water feedbacks, and seepage and surface water supply (see companion paper by Brauer et al., 2014). Lowland catchments can be divided into slightly sloping, freely draining catchments and flat polders with controlled water levels. Here, we apply WALRUS to two contrasting Dutch catchments: the Hupsel Brook catchment and Cabauw polder. In both catchments, WALRUS performs well: Nash–Sutcliffe efficiencies obtained after calibration on one year of discharge observations are 0.87 for the Hupsel Brook catchment and 0.83 for the Cabauw polder, with values of 0.74 and 0.76 for validation. The model also performs well during floods and droughts and can forecast the effect of control operations. Through the dynamic division between quick and slow flowroutes controlled by a wetness index, temporal and spatial variability in groundwater depths can be accounted for, which results in adequate simulation of discharge peaks as well as low flows. The performance of WALRUS is most sensitive to the parameter controlling the wetness index and the groundwater reservoir constant, and to a lesser extent to the quickflow reservoir constant. The effects of these three parameters can be identified in the discharge time series, which indicates that the model is not overparameterised (parsimonious). Forcing uncertainty was found to have a larger effect on modelled discharge than parameter uncertainty and uncertainty in initial conditions.


2014 ◽  
Vol 18 (10) ◽  
pp. 4007-4028 ◽  
Author(s):  
C. C. Brauer ◽  
P. J. J. F. Torfs ◽  
A. J. Teuling ◽  
R. Uijlenhoet

Abstract. The Wageningen Lowland Runoff Simulator (WALRUS) is a new parametric (conceptual) rainfall–runoff model which accounts explicitly for processes that are important in lowland areas, such as groundwater-unsaturated zone coupling, wetness-dependent flowroutes, groundwater–surface water feedbacks, and seepage and surface water supply (see companion paper by Brauer et al., 2014). Lowland catchments can be divided into slightly sloping, freely draining catchments and flat polders with controlled water levels. Here, we apply WALRUS to two contrasting Dutch catchments: the Hupsel Brook catchment and the Cabauw polder. In both catchments, WALRUS performs well: Nash–Sutcliffe efficiencies obtained after calibration on 1 year of discharge observations are 0.87 for the Hupsel Brook catchment and 0.83 for the Cabauw polder, with values of 0.74 and 0.76 for validation. The model also performs well during floods and droughts and can forecast the effect of control operations. Through the dynamic division between quick and slow flowroutes controlled by a wetness index, temporal and spatial variability in groundwater depths can be accounted for, which results in adequate simulation of discharge peaks as well as low flows. The performance of WALRUS is most sensitive to the parameter controlling the wetness index and the groundwater reservoir constant, and to a lesser extent to the quickflow reservoir constant. The effects of these three parameters can be identified in the discharge time series, which indicates that the model is not overparameterised (parsimonious). Forcing uncertainty was found to have a larger effect on modelled discharge than parameter uncertainty and uncertainty in initial conditions.


2014 ◽  
Vol 11 (12) ◽  
pp. 13259-13309 ◽  
Author(s):  
M. Herrnegger ◽  
H. P. Nachtnebel ◽  
K. Schulz

Abstract. This paper presents a novel technique to calculate mean areal rainfall in a high temporal resolution of 60 min on the basis of an inverse conceptual rainfall–runoff model and runoff observations. Rainfall exhibits a large spatio-temporal variability, especially in complex alpine terrain. Additionally, the density of the monitoring network in mountainous regions is low and measurements are subjected to major errors, which lead to significant uncertainties in areal rainfall estimates. The most reliable hydrological information available refers to runoff, which in the presented work is used as input for a rainfall–runoff model. Thereby a conceptual, HBV-type model is embedded in an iteration algorithm. For every time step a rainfall value is determined, which results in a simulated runoff value that corresponds to the observation. To verify the existence, uniqueness and stability of the inverse rainfall, numerical experiments with synthetic hydrographs as inputs into the inverse model are carried out successfully. The application of the inverse model with runoff observations as driving input is performed for the Krems catchment (38.4 km2), situated in the northern Austrian Alpine foothills. Compared to station observations in the proximity of the catchment, the inverse rainfall sums and time series have a similar goodness of fit, as the independent INCA rainfall analysis of Austrian Central Institute for Meteorology and Geodynamics (ZAMG). Compared to observations, the inverse rainfall estimates show larger rainfall intensities. Numerical experiments show, that cold state conditions in the inverse model do not influence the inverse rainfall estimates, when considering an adequate spin-up time. The application of the inverse model is a feasible approach to obtain improved estimates of mean areal rainfall. These can be used to enhance interpolated rainfall fields, e.g. for the estimation of rainfall correction factors, the parameterisation of elevation dependency or the application in real-time flood forecasting systems.


Sign in / Sign up

Export Citation Format

Share Document