scholarly journals Long-term projections of global water use for electricity generation under the Shared Socioeconomic Pathways and climate mitigation scenarios

Author(s):  
Nozomi Ando ◽  
Sayaka Yoshikawa ◽  
Shinichiro Fujimori ◽  
Shinjiro Kanae

Abstract. Electricity generation may become a key factor that accelerates water scarcity. In this study, we estimated the future global water use for electricity generation from 2005 to 2100 in 17 global sub-regions. Twenty-two future global change scenarios were examined, consisting of feasible combinations of five socioeconomic scenarios of the Shared Socioeconomic Pathways (SSPs) and six climate mitigation scenarios based on four forcing levels of representative concentration pathways (RCPs) and two additional forcing levels, to assess the impacts of socioeconomic and climate mitigation changes on water withdrawal and consumption for electricity generation. Climate policies such as targets of greenhouse gas (GHG) emissions are determined by climate mitigation scenarios. Both water withdrawal and consumption were calculated by multiplying the electricity generation of each energy source (e.g., coal, nuclear, biomass, and solar power) and the energy source-specific water use intensity. The future electricity generation dataset was derived from the Asia-Pacific Integrated/Computable General Equilibrium (AIM/CGE) model. Estimated water withdrawal and consumption varied significantly among the SSPs. In contrast, water withdrawal and consumption differed little among the climate mitigation scenarios even though GHG emissions depend on them. There are two explanations for these outcomes. First, electricity generation for energy sources requiring considerable amounts of water varied widely among the SSPs, while it did not differ substantially among the climate mitigation scenarios. Second, the introduction of more carbon capture and storage strategies increased water withdrawal and consumption under stronger mitigation scenarios, while the introduction of more renewable energy decreased water withdrawal and consumption. Therefore, the socioeconomic changes represented by the SSPs had a larger impact on water withdrawal and consumption for electricity generation, compared with the climate mitigation changes represented by the climate mitigation scenarios. The same trends were observed on a regional scale, even though the composition of energy sources differed completely from that on a global scale.

2018 ◽  
Vol 22 (4) ◽  
pp. 2117-2133 ◽  
Author(s):  
Zhongwei Huang ◽  
Mohamad Hejazi ◽  
Xinya Li ◽  
Qiuhong Tang ◽  
Chris Vernon ◽  
...  

Abstract. Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5∘) sectoral water withdrawal dataset for the period 1971–2010, which distinguishes six water use sectors, i.e., irrigation, domestic, electricity generation (cooling of thermal power plants), livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971–2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US), eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at the seasonal and annual timescales. The reconstructed gridded water withdrawal dataset is open access, and can be used for examining issues related to water withdrawals at fine spatial, temporal, and sectoral scales.


2012 ◽  
Vol 9 (12) ◽  
pp. 13879-13932 ◽  
Author(s):  
N. Hanasaki ◽  
S. Fujimori ◽  
T. Yamamoto ◽  
S. Yoshikawa ◽  
Y. Masaki ◽  
...  

Abstract. A novel global water scarcity assessment for the 21st century is presented in a two-part paper. In this first paper, water use scenarios are presented for the latest global hydrological models. The scenarios are compatible with the socio-economic scenarios of the Shared Socio-economic Pathways (SSPs), which are a part of the latest set of scenarios on global change developed by the integrated assessment, IAV (climate change impact, adaptation, and vulnerability assessment), and climate modeling community. The SSPs depict five global situations based on substantially different socio-economic conditions during the 21st century. Water use scenarios were developed to reflect the key concepts underpinning each situation. Each scenario consists of five factors: irrigation area, crop intensity, irrigation efficiency, industrial water withdrawal, and municipal water withdrawal. The first three factors are used to estimate agricultural water withdrawal. All factors were developed using simple models based on a literature review and analysis of historical records. The factors are grid-based at a spatial resolution of 0.5° × 0.5° and cover the whole 21st century at 5-yr intervals. Each factor displays a wide variation among the different global situations depicted: the irrigation area in 2085 varies between 270 and 450 km2, industrial water between 246 and 1714 km3 yr−1, and domestic water withdrawal between 573 and 1280 km3 yr−1. The water use scenarios can be used for global water scarcity assessments by identifying the regions vulnerable to water scarcity and analyzing the timing and magnitude of scarcity conditions.


2014 ◽  
Vol 5 (1) ◽  
pp. 15-40 ◽  
Author(s):  
Y. Wada ◽  
D. Wisser ◽  
M. F. P. Bierkens

Abstract. To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been developed in recent decades. However, few models consider the interaction between terrestrial water fluxes, and human activities and associated water use, and even fewer models distinguish water use from surface water and groundwater resources. Here, we couple a global water demand model with a global hydrological model and dynamically simulate daily water withdrawal and consumptive water use over the period 1979–2010, using two re-analysis products: ERA-Interim and MERRA. We explicitly take into account the mutual feedback between supply and demand, and implement a newly developed water allocation scheme to distinguish surface water and groundwater use. Moreover, we include a new irrigation scheme, which works dynamically with a daily surface and soil water balance, and incorporate the newly available extensive Global Reservoir and Dams data set (GRanD). Simulated surface water and groundwater withdrawals generally show good agreement with reported national and subnational statistics. The results show a consistent increase in both surface water and groundwater use worldwide, with a more rapid increase in groundwater use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and interannual variability. This alteration is particularly large over heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use and associated reservoir operations generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.


2008 ◽  
Vol 12 (4) ◽  
pp. 1027-1037 ◽  
Author(s):  
N. Hanasaki ◽  
S. Kanae ◽  
T. Oki ◽  
K. Masuda ◽  
K. Motoya ◽  
...  

Abstract. To assess global water resources from the perspective of subannual variation in water availability and water use, an integrated water resources model was developed. In a companion report, we presented the global meteorological forcing input used to drive the model and six modules, namely, the land surface hydrology module, the river routing module, the crop growth module, the reservoir operation module, the environmental flow requirement module, and the anthropogenic withdrawal module. Here, we present the results of the model application and global water resources assessments. First, the timing and volume of simulated agriculture water use were examined because agricultural use composes approximately 85% of total consumptive water withdrawal in the world. The estimated crop calendar showed good agreement with earlier reports for wheat, maize, and rice in major countries of production. In major countries, the error in the planting date was ±1 mo, but there were some exceptional cases. The estimated irrigation water withdrawal also showed fair agreement with country statistics, but tended to be underestimated in countries in the Asian monsoon region. The results indicate the validity of the model and the input meteorological forcing because site-specific parameter tuning was not used in the series of simulations. Finally, global water resources were assessed on a subannual basis using a newly devised index. This index located water-stressed regions that were undetected in earlier studies. These regions, which are indicated by a gap in the subannual distribution of water availability and water use, include the Sahel, the Asian monsoon region, and southern Africa. The simulation results show that the reservoir operations of major reservoirs (>1 km3) and the allocation of environmental flow requirements can alter the population under high water stress by approximately −11% to +5% globally. The integrated model is applicable to assessments of various global environmental projections such as climate change.


2015 ◽  
Vol 8 (8) ◽  
pp. 6417-6521 ◽  
Author(s):  
Y. Wada ◽  
M. Flörke ◽  
N. Hanasaki ◽  
S. Eisner ◽  
G. Fischer ◽  
...  

Abstract. To sustain growing food demand and increasing standard of living, global water use increased by nearly 6 times during the last 100 years and continues to grow. As water demands get closer and closer to the water availability in many regions, each drop of water becomes increasingly valuable and water must be managed more efficiently and intensively. However, soaring water use worsens water scarcity condition already prevalent in semi-arid and arid regions, increasing uncertainty for sustainable food production and economic development. Planning for future development and investments requires that we prepare water projections for the future. However, estimations are complicated because the future of world's waters will be influenced by a combination of environmental, social, economic, and political factors, and there is only limited knowledge and data available about freshwater resources and how they are being used. The Water Futures and Solutions initiative (WFaS) coordinates its work with other on-going scenario efforts for the sake of establishing a consistent set of new global water scenarios based on the Shared Socioeconomic Pathways (SSPs) and the Representative Concentration Pathways (RCPs). The WFaS "fast-track" assessment uses three global water models, namely H08, PCR-GLOBWB, and WaterGAP. This study assesses the state of the art for estimating and projecting water use regionally and globally in a consistent manner. It provides an overview of different approaches, the uncertainty, strengths and weaknesses of the various estimation methods, types of management and policy decisions for which the current estimation methods are useful. We also discuss additional information most needed to be able to improve water use estimates and be able to assess a greater range of management options across the water-energy-climate nexus.


Author(s):  
Mifedwil Jandra ◽  
Shofyullah MZ

This study related to Quranic verses about ocean and energy sources. The Quranic verses about ocean examined in two ways: classically and contemporarily. This study uses modern scientific commentary (tafseer) through the parallelistic approach. The aims of this study is to obtain information about the relevance between Quranic verses, natural phenomenon, energy sources, and the advantages. The commentary about ocean in the Quran offers some alternatives to several issuess. There is a lot of inventions in energy sources that found based on Quranic verses. Analysis on the verses about ocean shows that there is a match between the written verses (Qawliyah) in al-Quran and the natural phenomenon (Kawniyah verses). This is the greatest challenge to the modern civilization. Solutions in food safety and energy; health and medicine; transportation and good mobilization; environmental management, and the emerging of new dicipline in Islamic Marine Knowledge obtained after knowing the oceanic energy source. The hint found in oceanic verses helps to find solutions in technology for the human problem nowaday, at the future, and at the end human will use Ilahi guidance in their life.


2016 ◽  
Vol 9 (1) ◽  
pp. 175-222 ◽  
Author(s):  
Y. Wada ◽  
M. Flörke ◽  
N. Hanasaki ◽  
S. Eisner ◽  
G. Fischer ◽  
...  

Abstract. To sustain growing food demand and increasing standard of living, global water use increased by nearly 6 times during the last 100 years, and continues to grow. As water demands get closer and closer to the water availability in many regions, each drop of water becomes increasingly valuable and water must be managed more efficiently and intensively. However, soaring water use worsens water scarcity conditions already prevalent in semi-arid and arid regions, increasing uncertainty for sustainable food production and economic development. Planning for future development and investments requires that we prepare water projections for the future. However, estimations are complicated because the future of the world's waters will be influenced by a combination of environmental, social, economic, and political factors, and there is only limited knowledge and data available about freshwater resources and how they are being used. The Water Futures and Solutions (WFaS) initiative coordinates its work with other ongoing scenario efforts for the sake of establishing a consistent set of new global water scenarios based on the shared socio-economic pathways (SSPs) and the representative concentration pathways (RCPs). The WFaS "fast-track" assessment uses three global water models, namely H08, PCR-GLOBWB, and WaterGAP. This study assesses the state of the art for estimating and projecting water use regionally and globally in a consistent manner. It provides an overview of different approaches, the uncertainty, strengths and weaknesses of the various estimation methods, types of management and policy decisions for which the current estimation methods are useful. We also discuss additional information most needed to be able to improve water use estimates and be able to assess a greater range of management options across the water–energy–climate nexus.


2013 ◽  
Vol 4 (1) ◽  
pp. 355-392 ◽  
Author(s):  
Y. Wada ◽  
D. Wisser ◽  
M. F. P. Bierkens

Abstract. To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over a large scale, a number of macro-scale hydrological models (MHMs) have been developed over the recent decades. However, few models consider the feedback between water availability and water demand, and even fewer models explicitly incorporate water allocation from surface water and groundwater resources. Here, we integrate a global water demand model into a global water balance model, and simulate water withdrawal and consumptive water use over the period 1979–2010, considering water allocation from surface water and groundwater resources and explicitly taking into account feedbacks between supply and demand, using two re-analysis products: ERA-Interim and MERRA. We implement an irrigation water scheme, which works dynamically with daily surface and soil water balance, and include a newly available extensive reservoir data set. Simulated surface water and groundwater withdrawal show generally good agreement with available reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, but groundwater use has been increasing more rapidly than surface water use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and inter-annual variability. The alteration is particularly large over the heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.


Sign in / Sign up

Export Citation Format

Share Document