scholarly journals Land-use change may exacerbate climate change impacts on water resources in the Ganges basin

Author(s):  
Gina Tsarouchi ◽  
Wouter Buytaert

Quantifying how land-use change and climate change affect water resources is a challenge in hydrological science. The Upper Ganges (UG) river basin in northern India experiences monsoon flooding almost every year. Studies have shown evidence of strong coupling between the land surface (soil moisture) and atmosphere (precipitation) in northern India, which means that regional climate variations and changes in land use/cover could influence the temporal dynamics of land-atmosphere interactions. <br><br> This work aims to quantify how future projections of land-use and climate change are affecting the hydrological response of the UG river basin. Two different sets of modelling experiments were run using the JULES Land Surface Model and covering the period 2000&amp;ndash;2035: In the first set, climate change is taken into account, as JULES was driven by the CMIP5 (Coupled Model Intercomparison Project Phase 5) outputs of 21 models, under two Representative Concentration Pathways (RCP4.5 &amp; RCP8.5), whilst land use was kept constant at year 2010. In the second set, both climate change and land-use change were taken into consideration, as apart from the CMIP5 model outputs, JULES was also forced with a time-series of 15 future land-use scenarios, based on Landsat satellite imagery and Markov chain simulation. Variations in hydrological variables (stream flow, evapotranspiration and soil moisture) are calculated during the simulation period. <br><br> Significant changes in the near-future (years 2030&amp;ndash;2035) hydrologic fluxes arise under future land cover and climate change scenarios pointing towards a severe increase in high extremes of flow: the multi-model mean of the 95th percentile of streamflow [Q<sub>5</sub>] is projected to increase by 63&amp;thinsp;% under the combined land-use and climate change high emissions scenario [RCP8.5]. The changes in all examined hydrological components are greater in the combined land-use and climate change experiment. <br><br> Results are further presented in a water resources context, aiming to address potential implications of climate change from a water-demand perspective, highlighting that that demand thresholds in the UG region are projected to be exceeded in the future winter months (Dec&amp;ndash;Feb).

2018 ◽  
Vol 22 (2) ◽  
pp. 1411-1435 ◽  
Author(s):  
Gina Tsarouchi ◽  
Wouter Buytaert

Abstract. Quantifying how land-use change and climate change affect water resources is a challenge in hydrological science. This work aims to quantify how future projections of land-use and climate change might affect the hydrological response of the Upper Ganges river basin in northern India, which experiences monsoon flooding almost every year. Three different sets of modelling experiments were run using the Joint UK Land Environment Simulator (JULES) land surface model (LSM) and covering the period 2000–2035: in the first set, only climate change is taken into account, and JULES was driven by the CMIP5 (Coupled Model Intercomparison Project Phase 5) outputs of 21 models, under two representative concentration pathways (RCP4.5 and RCP8.5), whilst land use was held fixed at the year 2010. In the second set, only land-use change is taken into account, and JULES was driven by a time series of 15 future land-use pathways, based on Landsat satellite imagery and the Markov chain simulation, whilst the meteorological boundary conditions were held fixed at years 2000–2005. In the third set, both climate change and land-use change were taken into consideration, as the CMIP5 model outputs were used in conjunction with the 15 future land-use pathways to force JULES. Variations in hydrological variables (stream flow, evapotranspiration and soil moisture) are calculated during the simulation period. Significant changes in the near-future (years 2030–2035) hydrologic fluxes arise under future land-cover and climate change scenarios pointing towards a severe increase in high extremes of flow: the multi-model mean of the 95th percentile of streamflow (Q5) is projected to increase by 63 % under the combined land-use and climate change high emissions scenario (RCP8.5). The changes in all examined hydrological components are greater in the combined land-use and climate change experiment. Results are further presented in a water resources context, aiming to address potential implications of climate change and land-use change from a water demand perspective. We conclude that future water demands in the Upper Ganges region for winter months may not be met.


2018 ◽  
Vol 19 (11) ◽  
pp. 1899-1914 ◽  
Author(s):  
Yi Xi ◽  
Shushi Peng ◽  
Philippe Ciais ◽  
Matthieu Guimberteau ◽  
Yue Li ◽  
...  

Abstract As an essential source of freshwater river flow comprises ~80% of the water consumed in China. Per capita water resources in China are only a quarter of the global average, and its economy is demanding in water resources; this creates an urgent need to quantify the factors that contribute to changes in river flow. Here, we used an offline process-based land surface model (ORCHIDEE) at high spatial resolution (0.1° × 0.1°) to simulate the contributions of climate change, rising atmospheric CO2 concentration, and land-use change to the change in natural river flow for 10 Chinese basins from 1979 to 2015. We found that climate change, especially an increase in precipitation, was responsible for more than 90% of the changes in natural river flow, while the direct effect of rising CO2 concentration and land-use change contributes at most 6.3%. Nevertheless, rising CO2 concentration and land-use change cannot be neglected in most basins as these two factors significantly change transpiration. From 2003 to 2015, the increase in water consumption offset more than 30% of the increase in natural river flow in northern China, especially in the Yellow River basin (~140%), but it had little effect on observed river flow in southern China. Although the uncertainties of rainfall data and the statistical water consumption data could propagate the uncertainties in simulated river flow, this study could be helpful for water planning and management in China under the context of global warming.


2020 ◽  
Vol 13 (10) ◽  
pp. 4713-4747
Author(s):  
Tokuta Yokohata ◽  
Tsuguki Kinoshita ◽  
Gen Sakurai ◽  
Yadu Pokhrel ◽  
Akihiko Ito ◽  
...  

Abstract. Future changes in the climate system could have significant impacts on the natural environment and human activities, which in turn affect changes in the climate system. In the interaction between natural and human systems under climate change conditions, land use is one of the elements that play an essential role. On the one hand, future climate change will affect the availability of water and food, which may impact land-use change. On the other hand, human-induced land-use change can affect the climate system through biogeophysical and biogeochemical effects. To investigate these interrelationships, we developed MIROC-INTEG-LAND (MIROC INTEGrated LAND surface model version 1), an integrated model that combines the land surface component of global climate model MIROC (Model for Interdisciplinary Research on Climate) with water resources, crop production, land ecosystem, and land-use models. The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balance, human water management, and crop growth incorporates a land use decision-making model based on economic activities. In MIROC-INTEG-LAND, spatially detailed information regarding water resources and crop yields is reflected in the prediction of future land-use change, which cannot be considered in the conventional integrated assessment models. In this paper, we introduce the details and interconnections of the submodels of MIROC-INTEG-LAND, compare historical simulations with observations, and identify various interactions between the submodels. By evaluating the historical simulation, we have confirmed that the model reproduces the observed states well. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand. The newly developed MIROC-INTEG-LAND could be combined with atmospheric and ocean models to develop an integrated earth system model to simulate the interactions among coupled natural–human earth system components.


2019 ◽  
Vol 2 (2) ◽  
pp. 125-131
Author(s):  
Loi Thi Pham ◽  
Khoi Nguyen Dao

Assessing water resources under the influence of environmental change have gained attentions of scientists. The objective of this study was to analyze the impacts of land use change and climate change on water resources in terms quantity and quality in the 3S basin in the period 1981–2008 by using hydrological modeling (SWAT model). The results showed that streamflow and water quality (TSS, T-N, and T-P) tend to increase under individual and combined effects of climate change and land use change. In addition, the impact of land use change on the flow was smaller than the climate change impact. However, water balance components and water quality were equally affected by two factors of climate change and land use change. In general, the results of this study could serve as a reference for water resource management and planning in the river basin.


2021 ◽  
Vol 13 (6) ◽  
pp. 3286
Author(s):  
Yuk San Liew ◽  
Safari Mat Desa ◽  
Md. Nasir Md. Noh ◽  
Mou Leong Tan ◽  
Nor Azazi Zakaria ◽  
...  

Flooding is a frequent, naturally recurring phenomenon worldwide that can become disastrous if not addressed accordingly. This paper aims to evaluate the impacts of land use change and climate change on flooding in the Segamat River Basin, Johor, Malaysia, with 1D–2D hydrodynamic river modeling, using InfoWorks Integrated Catchment Modeling (ICM). The study involved the development of flood maps for four different scenarios: (1) future land use in 2030; (2) the impacts of climate change; (3) three mitigation strategies comprising detention ponds, rainwater harvesting systems (RWHSs), and permeable pavers; and (4) a combination of these three mitigation strategies. The obtained results show increases in the flood peaks under both the land use change and climate change scenarios. With the anticipated increase in development activities within the vicinity up to 2030, the overall impact of urbanization on the extent of flooding would be rather moderate, as the upper and middle parts of the basin would still be dominated by forests and agricultural activities (approximately 81.13%). In contrast, the potential flood-inundated area is expected to increase from 12.25% to 16.64% under storms of 10-, 50-, 100-, and 1000-year average recurrence intervals (ARI). Interestingly, the simulation results suggest that only the detention pond mitigation strategy has a considerable impact on reducing floods, while the other two mitigation strategies have less flood reduction advantages for this agricultural-based rural basin located in a tropical region.


2019 ◽  
Author(s):  
Tokuta Yokohata ◽  
Tsuguki Kinoshita ◽  
Gen Sakurai ◽  
Yadu Pokhrel ◽  
Akihiko Ito ◽  
...  

Abstract. Future changes in the climate system could have significant impacts on the natural environment and human activities, which in turn affect changes in the climate system. In the interaction between natural and human systems under climate change conditions, land use is one of the elements that play an essential role. Future climate change will affect the availability of water and food, which may impact land-use change. On the other hand, human land-use change can affect the climate system through bio-geophysical and bio-geochemical effects. To investigate these interrelationships, we developed MIROC-INTEG1 (MIROC INTEGrated terrestrial model version 1), an integrated model that combines the global climate model MIROC (Model for Interdisciplinary Research on Climate) with water resources, crop production, land ecosystem, and land use models. In this paper, we introduce the details and interconnections of the sub-models of MIROC-INTEG1, compare historical simulations with observations, and identify the various interactions between sub-models. MIROC-INTEG1 makes it possible to quantitatively evaluate the feedback processes or nexus between climate, water resources, crop production, land use, and ecosystem, and to assess the risks, trade-offs and co-benefits associated with future climate change and prospective mitigation and adaptation policies.


Author(s):  
Wenting Li ◽  
Xiaoli Yang ◽  
Liliang Ren ◽  
Qianguo Lin ◽  
Xiong Zhou ◽  
...  

Abstract The response of blue and green water to climate and land-use change in the Ganjiang River Basin (GRB) is evaluated, via the SWAT model that combines three scenarios (the land-use/land-cover (LULC), climate change, and integrated climate and LULC change scenarios) in the 2040s (2031–2050) and 2060s (2051–2070). The results indicate that, for the GRB, cropland, woodland, and grassland show a decreasing trend, while build-up and water areas show an increasing trend in terms of future land-use change. The climatic conditions projected using NORESM1-M model data under the RCP4.5 and RCP8.5 scenarios suggest, respectively, increases in precipitation (31.17 and 27.24 mm), maximum temperature (2.25 and 2.69 °C), and minimum temperature (1.96 and 2.58 °C). Under climate change conditions, blue water is estimated to decrease by up to 16.89 and 21.4 mm under RCP4.5 and RCP8.5, while green water is estimated to increase up to 19.14 and 20.22 mm, respectively. Under the LULC changes, blue water is projected to increase by up to 5.50 and 7.57 mm, while green water shows decreases of 4.05 and 7.80 mm for the LULC2035 and LULC2055 scenarios, respectively. Under the four combined LULC and climate change conditions (RCP4.5_2040s, RCP4.5_2060s, RCP8.5_2040s, and RCP8.5_2060s), blue water tends to decrease by 0.67, 7.47, 7.28, and 9.99 mm, while green water increases by 19.24, 20.8, 13.87, and 22.30 mm. The influence of climate variation on blue and green water resources is comparatively higher than that of the integrated impacts of climate and land-use changes. The results of this study offer a scientific reference for the water resources management and planning department responsible for scheduling water resource management plan in the GRB.


2019 ◽  
Vol 11 (24) ◽  
pp. 7221 ◽  
Author(s):  
Dao Nguyen Khoi ◽  
Van Nguyen ◽  
Truong Thao Sam ◽  
Pham Nhi

The effects of climate and land-use changes have put intense pressures on water resources with regard to water quantity and quality in the La Buong River Basin, located in Southern Vietnam. Therefore, an estimate of such effects and their consequences on water resources in this area is needed. The aim of this study is to evaluate the segregated and aggregated effects of climate change and land-use change on streamflow and water quality components (sediment and nutrient loads) using the well-known Soils and Water Assessment Tool (SWAT). The SWAT model was carefully calibrated and validated against the observation data before it can be used as a simulation tool to study the impacts of climate and land-use changes on hydrological processes. As a result of this study, it shows a reduction in the wet-season and annual streamflow, and sediment and nutrient loads will be occurred in the study area due to climate change effects, while the streamflow, and sediment and nutrient loads will be increased under the effects of the land-use change. Moreover, the streamflow and water quality components are more sensitive to land-use change than climate change. The results obtained from this study can provide a basic knowledge of the effects of climate and land-use changes on the streamflow and water quality to the local and national authorities for the future development of integrated water resources management in the La Buong River Basin.


Sign in / Sign up

Export Citation Format

Share Document