scholarly journals Examining controls on peak annual streamflow and floods in the Fraser River Basin of British Columbia

2017 ◽  
Author(s):  
Charles L. Curry ◽  
Francis W. Zwiers

Abstract. The Fraser River basin (FRB) of British Columbia is one of the largest and most important watersheds in Western North America, and is home to a rich diversity of biological species and economic assets that depend implicitly upon its extensive riverine habitats. The hydrology of the FRB is dominated by snow accumulation and melt processes, leading to a prominent annual peak streamflow invariably occurring in June–July. However, while annual peak daily streamflow (APF) during the spring freshet in the FRB is historically well correlated with basin-averaged, April 1 snow water equivalent (SWE), there are numerous occurrences of anomalously large APF in below- or near-normal SWE years, some of which have resulted in damaging floods in the region. An imperfect understanding of which other climatic factors contribute to these anomalously large APFs hinders robust projections of their magnitude and frequency. We employ the Variable Infiltration Capacity (VIC) process-based hydrological model driven by gridded observations to investigate the key controlling factors of anomalous APF events in the FRB and four of its subbasins that contribute more than 70 % of the annual flow at Fraser-Hope. The relative influence of a set of predictors characterizing the interannual variability of rainfall, snowfall, snowpack (characterized by the annual maximum value, SWEmax), soil moisture and temperature on simulated APF at Hope (the main outlet of the FRB) and at the subbasin outlets is examined within a regression framework. The influence of large-scale climate modes of variability (the Pacific Decadal Oscillation (PDO) and the El Niño-Southern Oscillation (ENSO)) on APF magnitude is also assessed, and placed in context with these more localized controls. The results indicate that next to SWEmax (which strongly controls the annual maximum of soil moisture), the snowmelt rate, the ENSO and PDO indices, and rate of warming subsequent to the date of SWEmax are the most influential predictors of APF magnitude in the FRB and its subbasins. The identification of these controls on annual peak flows in the region may be of use in the context of seasonal prediction or future projected streamflow behaviour.

2018 ◽  
Vol 22 (4) ◽  
pp. 2285-2309 ◽  
Author(s):  
Charles L. Curry ◽  
Francis W. Zwiers

Abstract. The Fraser River Basin (FRB) of British Columbia is one of the largest and most important watersheds in western North America, and home to a rich diversity of biological species and economic assets that depend implicitly upon its extensive riverine habitats. The hydrology of the FRB is dominated by snow accumulation and melt processes, leading to a prominent annual peak streamflow invariably occurring in May–July. Nevertheless, while annual peak daily streamflow (APF) during the spring freshet in the FRB is historically well correlated with basin-averaged, 1 April snow water equivalent (SWE), there are numerous occurrences of anomalously large APF in below- or near-normal SWE years, some of which have resulted in damaging floods in the region. An imperfect understanding of which other climatic factors contribute to these anomalously large APFs hinders robust projections of their magnitude and frequency. We employ the Variable Infiltration Capacity (VIC) process-based hydrological model driven by gridded observations to investigate the key controlling factors of anomalous APF events in the FRB and four of its subbasins that contribute nearly 70 % of the annual flow at Fraser-Hope. The relative influence of a set of predictors characterizing the interannual variability of rainfall, snowfall, snowpack (characterized by the annual maximum value, SWEmax), soil moisture and temperature on simulated APF at Hope (the main outlet of the FRB) and at the subbasin outlets is examined within a regression framework. The influence of large-scale climate modes of variability (the Pacific Decadal Oscillation (PDO) and the El Niño–Southern Oscillation – ENSO) on APF magnitude is also assessed, and placed in context with these more localized controls. The results indicate that next to SWEmax (univariate Spearman correlation with APF of ρ^ = 0.64; 0.70 (observations; VIC simulation)), the snowmelt rate (ρ^ = 0.43 in VIC), the ENSO and PDO indices (ρ^ = −0.40; −0.41) and (ρ^ = −0.35; −0.38), respectively, and rate of warming subsequent to the date of SWEmax (ρ^ = 0.26; 0.38), are the most influential predictors of APF magnitude in the FRB and its subbasins. The identification of these controls on annual peak flows in the region may be of use in understanding seasonal predictions or future projected streamflow changes.


2017 ◽  
Vol 18 (2) ◽  
pp. 473-496 ◽  
Author(s):  
Siraj ul Islam ◽  
Stephen J. Déry ◽  
Arelia T. Werner

Abstract Changes in air temperature and precipitation can modify snowmelt-driven runoff in snowmelt-dominated regimes. This study focuses on climate change impacts on the snow hydrology of the Fraser River basin (FRB) of British Columbia (BC), Canada, using the Variable Infiltration Capacity model (VIC). Statistically downscaled forcing datasets based on 12 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are used to drive VIC for two 30-yr time periods, a historical baseline (1980–2009) and future projections (2040–69: 2050s), under representative concentration pathways (RCPs) 4.5 and 8.5. The ensemble-based VIC simulations reveal widespread and regionally coherent spatial changes in snowfall, snow water equivalent (SWE), and snow cover over the FRB by the 2050s. While the mean precipitation is projected to increase slightly, the fraction of precipitation falling as snow is projected to decrease by nearly 50% in the 2050s compared to the baseline. Snow accumulation and snow-covered area are projected to decline substantially across the FRB, particularly in the Rocky Mountains. Onset of springtime snowmelt in the 2050s is projected to be nearly 25 days earlier than historically, yielding more runoff in the winter and spring for the Fraser River at Hope, BC, and earlier recession to low-flow volumes in summer. The ratio of snowmelt contribution to runoff decreases by nearly 20% in the Stuart and Nautley subbasins of the FRB in the 2050s. The decrease in SWE and loss of snow cover is greater from low to midelevations than in high elevations, where temperatures remain sufficiently cold for precipitation to fall as snow.


2018 ◽  
Author(s):  
Siraj Ul Islam ◽  
Charles L. Curry ◽  
Stephen J. Déry ◽  
Francis W. Zwiers

Abstract. Canada's Fraser River Basin (FRB), the largest watershed in the province of British Columbia, supplies vital freshwater resources and is the world's most productive salmon river system. We evaluate projected changes in the FRB's runoff variability and regime transitions using the Variable Infiltration Capacity (VIC) hydrological model. The VIC model is driven by an ensemble of 21 statistically downscaled simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), for a 150-year time period (1950–2099) over which greenhouse gas concentrations follow the CMIP5 Representative Concentration Pathway (RCP) 8.5. Using mean and standard deviation (variability) metrics, we emphasize projected hydroclimatological changes in the cold season (October to March) over different sub-basins and geoclimatic regions of the FRB. Warming consistent with the RCP8.5 scenario would lead to increased precipitation input to the basin with higher interannual variability and considerably reduced winter snowfall shortening the average snow accumulation season by about 38 %. Such changes in temperature and precipitation will increase cold season runoff variability leading to higher cold season peak flows. In the lower Fraser River, cold season runoff will increase by 70 % and its interannual variability will double compared to the 1990s, presenting substantial challenges for operational flow forecasting by the end of this century. Cold season peak flows will increase substantially, particularly in the Coast Mountains, where the peak flow magnitudes will rise by 60 %. These projected changes are consistent with a basin-wide transition from a snow-melt driven flow regime to one that more closely resembles a rainfall driven regime. This study provides key information relating to projected hydroclimate variability across the FRB, describes potential impacts on its water resources, and assesses the implications for future extreme hydrological events.


2019 ◽  
Vol 23 (2) ◽  
pp. 811-828 ◽  
Author(s):  
Siraj Ul Islam ◽  
Charles L. Curry ◽  
Stephen J. Déry ◽  
Francis W. Zwiers

Abstract. In response to ongoing and future-projected global warming, mid-latitude, nival river basins are expected to transition from a snowmelt-dominated flow regime to a nival–pluvial one with an earlier spring freshet of reduced magnitude. There is, however, a rich variation in responses that depends on factors such as the topographic complexity of the basin and the strength of maritime influences. We illustrate the potential effects of a strong maritime influence by studying future changes in cold season flow variability in the Fraser River Basin (FRB) of British Columbia, a large extratropical watershed extending from the Rocky Mountains to the Pacific Coast. We use a process-based hydrological model driven by an ensemble of 21 statistically downscaled simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), following the Representative Concentration Pathway 8.5 (RCP 8.5). Warming under RCP 8.5 leads to reduced winter snowfall, shortening the average snow accumulation season by about one-third. Despite this, large increases in cold season rainfall lead to unprecedented cold season peak flows and increased overall runoff variability in the VIC simulations. Increased cold season rainfall is shown to be the dominant climatic driver in the Coast Mountains, contributing 60 % to mean cold season runoff changes in the 2080s. Cold season runoff at the outlet of the basin increases by 70 % by the 2080s, and its interannual variability more than doubles when compared to the 1990s, suggesting substantial challenges for operational flow forecasting in the region. Furthermore, almost half of the basin (45 %) transitions from a snow-dominated runoff regime in the 1990s to a primarily rain-dominated regime in the 2080s, according to a snowmelt pulse detection algorithm. While these projections are consistent with the anticipated transition from a nival to a nival–pluvial hydrologic regime, the marked increase in FRB cold season runoff is likely linked to more frequent landfalling atmospheric rivers in the region projected in the CMIP5 models, providing insights for other maritime-influenced extratropical basins.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1617
Author(s):  
Yonas B. Dibike ◽  
Rajesh R. Shrestha ◽  
Colin Johnson ◽  
Barrie Bonsal ◽  
Paulin Coulibaly

Flows originating from cold and mountainous watersheds are highly dependent on temperature and precipitation patterns, and the resulting snow accumulation and melt conditions, affecting the magnitude and timing of annual peak flows. This study applied a multiple linear regression (MLR) modelling framework to investigate spatial variations and relative importance of hydroclimatic drivers of annual maximum flows (AMF) and mean spring flows (MAMJflow) in 25 river basins across western Canada. The results show that basin average maximum snow water equivalent (SWEmax), April 1st SWE and spring precipitation (MAMJprc) are the most important predictors of both AMF and MAMJflow, with the proportion of explained variance averaging 51.7%, 44.0% and 33.5%, respectively. The MLR models’ abilities to project future changes in AMF and MAMJflow in response to changes to the hydroclimatic controls are also examined using the Canadian Regional Climate Model (CanRCM4) output for RCP 4.5 and RCP8.5 scenarios. The results show considerable spatial variations depending on individual watershed characteristics with projected changes in AMF ranging from −69% to +126% and those of MAMJflow ranging from −48% to +81% by the end of this century. In general, the study demonstrates that the MLR framework is a useful approach for assessing the spatial variation in hydroclimatic controls of annual maximum and mean spring flows in the western Canadian river basins. However, there is a need to exercise caution in applying MLR models for projecting changes in future flows, especially for regulated basins.


2009 ◽  
Vol 10 (5) ◽  
pp. 1257-1270 ◽  
Author(s):  
Ruud Hurkmans ◽  
Peter A. Troch ◽  
Remko Uijlenhoet ◽  
Paul Torfs ◽  
Matej Durcik

Abstract Understanding the long-term (interannual–decadal) variability of water availability in river basins is paramount for water resources management. Here, the authors analyze time series of simulated terrestrial water storage components, observed precipitation, and discharge spanning 74 yr in the Colorado River basin and relate them to climate indices that describe variability of sea surface temperature and sea level pressure in the tropical and extratropical Pacific. El Niño–Southern Oscillation (ENSO) indices in winter [January–March (JFM)] are related to winter precipitation as well as to soil moisture and discharge in the lower Colorado River basin. The low-frequency mode of the Pacific decadal oscillation (PDO) appears to be strongly correlated with deep soil moisture. During the negative PDO phase, saturated storage anomalies tend to be negative and the “amplitudes” (mean absolute anomalies) of shallow soil moisture, snow, and discharge are slightly lower compared to periods of positive PDO phases. Predicting interannual variability, therefore, strongly depends on the capability of predicting PDO regime shifts. If indeed a shift to a cool PDO phase occurred in the mid-1990s, as data suggest, the current dry conditions in the Colorado River basin may persist.


2021 ◽  
Vol 11 (18) ◽  
pp. 8365
Author(s):  
Liming Gao ◽  
Lele Zhang ◽  
Yongping Shen ◽  
Yaonan Zhang ◽  
Minghao Ai ◽  
...  

Accurate simulation of snow cover process is of great significance to the study of climate change and the water cycle. In our study, the China Meteorological Forcing Dataset (CMFD) and ERA-Interim were used as driving data to simulate the dynamic changes in snow depth and snow water equivalent (SWE) in the Irtysh River Basin from 2000 to 2018 using the Noah-MP land surface model, and the simulation results were compared with the gridded dataset of snow depth at Chinese meteorological stations (GDSD), the long-term series of daily snow depth dataset in China (LSD), and China’s daily snow depth and snow water equivalent products (CSS). Before the simulation, we compared the combinations of four parameterizations schemes of Noah-MP model at the Kuwei site. The results show that the rainfall and snowfall (SNF) scheme mainly affects the snow accumulation process, while the surface layer drag coefficient (SFC), snow/soil temperature time (STC), and snow surface albedo (ALB) schemes mainly affect the melting process. The effect of STC on the simulation results was much higher than the other three schemes; when STC uses a fully implicit scheme, the error of simulated snow depth and snow water equivalent is much greater than that of a semi-implicit scheme. At the basin scale, the accuracy of snow depth modeled by using CMFD and ERA-Interim is higher than LSD and CSS snow depth based on microwave remote sensing. In years with high snow cover, LSD and CSS snow depth data are seriously underestimated. According to the results of model simulation, it is concluded that the snow depth and snow water equivalent in the north of the basin are higher than those in the south. The average snow depth, snow water equivalent, snow days, and the start time of snow accumulation (STSA) in the basin did not change significantly during the study period, but the end time of snow melting was significantly advanced.


Sign in / Sign up

Export Citation Format

Share Document