scholarly journals Spatial distribution of groundwater recharge, based on regionalized soil moisture models in Wadi Natuf karst aquifers, Palestine

2021 ◽  
Author(s):  
Clemens Messerschmid ◽  
Amjad Aliewi

Abstract. While groundwater recharge is considered fundamental to hydrogeological insights and basin management, only relatively little attention has been paid to its spatial distribution. And in ungauged catchments it has rarely been quantified, especially on the catchment scale. For the first time, this study attempts such analysis, in a previously ungauged basin. Our work based on field data of several soil moisture stations, which represent five geological formations of karst rock in Wadi Natuf, a semi-arid to sub-humid Mediterranean catchment in the occupied Palestinian West Bank. For that purpose, recharge was conceptualized as deep percolation from soil moisture under saturation excess conditions, which had been modelled parsimoniously and separately with different formation-specific recharge rates. For the regionalisation, inductive methods of empirical field-measurements and observations were combined with deductive approaches of extrapolation, following the recommendations for hydrological Prediction in Ungauged Basins (PUB), by the International Association of Hydrological Sciences (IAHS). Our results show an average annual recharge estimation in Wadi Natuf Catchment (103 km2), ranging from 24 to 28 Mm3/yr, equivalent to recharge coefficients (RC) of 39–46 % of average annual precipitation. Thus, for the first time, formation-specific RC-values could be derived, assessed and quantified in their spatial distribution, and by creating a schematic conceptual basin classification framework for regionalisation that is also applicable in many comparable sedimentary basins in the Mediterranean and worldwide.

2018 ◽  
Author(s):  
Clemens Messerschmid ◽  
Jens Lange ◽  
Martin Sauter

Abstract. Groundwater recharge processes in semi-arid climates are highly sensitive to spatial and temporal variability (event precipitation). However, in previous research, the spatial distribu-tion of recharge has received relatively little attention. This study differentiates recharge ac-cording to the following spatial characteristics: (a) soil type and soil condition, (b) land forms such as relief, vegetation and land use, and (c) lithology and hydrogeological characteristics of the subsurface rock formation. For the first time, this paper analyses and quantifies the specific recharge in the different individual rock formations of the Western Aquifer Basin (WAB). The WAB is a large transboundary karst aquifer that stretches from sub-humid to semi-arid climates from the recharge area in the West Bank Mountains to the Mediterranean Coast. The assessment is based on actual field data, including soil moisture and spring dis-charge in Wadi Natuf, a 103 km2 large sub-catchment in the West Bank slopes and mountain region, i.e. the recharge area of the WAB. A parsimonious soil moisture balance model was set up to calculate daily recharge rates from daily precipitation and evapotranspiration records over an extended period of 7 years (2003/2004–2009/2010). Unlike in most comparable studies, the simple but solid parsimonious soil moisture and percolation model and the budget calculations were based on actual quantitative field-observations, in contrast's daily deep percolation rates were compared with soil moisture field-data and in addition, by comparing major event recharge depths with daily spring discharge response. This combination of modelling and intensive field measurements, comprising eight different soil moisture measurement stations in six different litho-facies formations allowed identifying and quantifying the recharge characteristics of each formation at high spatial resolution, which is a first in the Western Aquifer. We found that recharge varies widely at the spatial dimension, ranging between 0 % and almost 60 % of annual rainfall. The spatially variable long-term average recharge coefficients were applied to other outcropping formations by a ranking procedure taking into account each of the three above spatial characteristics (landform, soil and geology). In addition to the recharge analysis, special emphasis was paid to the examination of the role of perched leaky aquifers positioned between the main regional Upper and Lower Aquifers. The particular geometry of the local aquifers, i.e. hills with well-defined aquifers, leaky aqui-tard bases and therefore well-defined catchment areas, allowed the quantification of the flow budget. By measuring and budgeting spring group discharge of each leaky sub-aquifer, for the first time also leakage coefficients could be calculated empirically. The methodology of this study is also applicable to comparable catchments and aquifers out-side the region. The resulting mean annual recharge coefficients allow the prediction of the spatial distribution of recharge at any given sub-catchment or management cell size, also beyond Wadi Natuf (in a follow-up paper).


2012 ◽  
Vol 16 (11) ◽  
pp. 4375-4386 ◽  
Author(s):  
Y. Tramblay ◽  
R. Bouaicha ◽  
L. Brocca ◽  
W. Dorigo ◽  
C. Bouvier ◽  
...  

Abstract. In northern Morocco are located most of the dams and reservoirs of the country, while this region is affected by severe rainfall events causing floods. To improve the management of the water regulation structures, there is a need to develop rainfall–runoff models to both maximize the storage capacity and reduce the risks caused by floods. In this study, a model is developed to reproduce the flood events for a 655 km2 catchment located upstream of the 6th largest dam in Morocco. Constrained by data availability, a standard event-based model combining a SCS-CN (Soil Conservation Service Curve Number) loss model and a Clark unit hydrograph was developed for hourly discharge simulation using 16 flood events that occurred between 1984 and 2008. The model was found satisfactory to reproduce the runoff and the temporal evolution of floods, even with limited rainfall data. Several antecedent wetness conditions estimators for the catchment were compared with the initial condition of the model. Theses estimators include an antecedent discharge index, an antecedent precipitation index and a continuous daily soil moisture accounting model (SMA), based on precipitation and evapotranspiration. The SMA model performed the best to estimate the initial conditions of the event-based hydrological model (R2 = 0.9). Its daily output has been compared with ASCAT and AMSR-E remote sensing data products, which were both able to reproduce with accuracy the daily simulated soil moisture dynamics at the catchment scale. This same approach could be implemented in other catchments of this region for operational purposes. The results of this study suggest that remote sensing data are potentially useful to estimate the soil moisture conditions in the case of ungauged catchments in Northern Africa.


2017 ◽  
Vol 193 ◽  
pp. 55-70 ◽  
Author(s):  
Bhumika Uniyal ◽  
Jörg Dietrich ◽  
Christos Vasilakos ◽  
Ourania Tzoraki

1995 ◽  
Vol 9 (3-4) ◽  
pp. 445-467 ◽  
Author(s):  
J. D. Kalma ◽  
B. C. Bates ◽  
R. A. Woods

2012 ◽  
Vol 9 (8) ◽  
pp. 9361-9390 ◽  
Author(s):  
Y. Tramblay ◽  
R. Bouaicha ◽  
L. Brocca ◽  
W. Dorigo ◽  
C. Bouvier ◽  
...  

Abstract. In Northern Morocco are located most of the dams and reservoirs of the country, while this region is affected by severe rainfall events causing floods. To improve the management of the water regulation structures, there is a need to develop rainfall-runoff models to both maximize the storage capacity and reduce the risks caused by floods. In this study, a model is developed to reproduce the flood events for a 655 km2 catchment located upstream of the 6th largest dam of the Morocco. Constrained by data availability, a standard event-based model was developed for hourly discharge using 16 flood events that occurred between 1984 and 2008. The model was found satisfactory to reproduce the runoff and the temporal evolution of floods, even with limited rainfall data. Several antecedent wetness conditions estimators for the catchment were compared with the initial condition of the model. These estimators include the discharge of the previous days, the antecedent precipitation index and a continuous daily soil moisture accounting model (SMA). The SMA model performed the best to estimate the initial conditions of the model, with R2=0.9. Its daily output has been compared with ASCAT and AMSR-E remote sensing data products, both were able to reproduce with accuracy the daily soil moisture dynamics at the catchment scale. This same approach could be implemented in other catchments of this region for operational purposes. The results of this study indicate the potential usefulness of remote sensing data to estimate the soil moisture conditions in the case of ungauged catchments in Northern Africa.


2020 ◽  
Vol 10 (10) ◽  
Author(s):  
M. Afzal ◽  
R. Ragab

Abstract In this study, the Distributed Catchment-Scale Model, DiCaSM, was used to study the impact of climate change on the hydrology of the Eden catchment, north east of Scotland. As a first step, the model was successfully calibrated and validated for a 42 years period. The DiCaSM model was then used to study the impact of climate change on the water availability. Data from the UKCP09 Climate change scenarios for the 2010–2039, 2040–2069 and 2070–2099 periods, considering three gas emission scenarios (low, medium and high), were applied. The results indicated that the greatest decrease in streamflow and groundwater recharge was projected to happen under the high emission scenarios towards the end of the century, i.e. between 2070 and 2099. This would mainly be due to the summers becoming drier. Meanwhile, the projected increase in winter precipitation did not contribute much towards groundwater recharge due the projected increases in evapotranspiration and soil moisture deficit. The following drought indices were calculated and were found to be effective in predicting different types of droughts: the Standardized Precipitation Index, SPI, and the Standardized Precipitation Evaporation Index, SPEI, the Reconnaissance Drought Index, RDI, the modified adjusted RDI, the Soil Moisture Deficit, SMD and the Wetness Index, WI. The findings of the study have broader implications in water resources management considering the future changes in climate.


2020 ◽  
Vol 24 (2) ◽  
pp. 887-917 ◽  
Author(s):  
Clemens Messerschmid ◽  
Martin Sauter ◽  
Jens Lange

Abstract. While groundwater recharge is one of the most prominently covered subjects in hydrogeology, the spatial distribution of recharge has been given relatively little attention, especially in semi-arid, karstic aquifers. Under conditions of highly diverse geology, relief, vegetation and land use, the complexity and variability of spatially distributed hydrological processes remains a challenge in many regions around the world. This is particularly true for hitherto ungauged basins, such as Wadi Natuf, a 103 km2 large karstic Eastern Mediterranean watershed in the Palestinian upstream mountain and recharge area of the Western Aquifer Basin (WAB), which is shared with Israel in the coastal plain. In this first in a series of two papers, distributed recharge is estimated and represented, based on 7 years of extensive field observations and measurements and based conceptually on observable physical landscape features such as geology, land use and land cover (LU/LC) and especially soil conditions. For the first time in the WAB, a forward calculated soil moisture and percolation model (SMSP) was set up with parameters directly gained from field observations. The model was parameterised in a strictly parsimonious manner, as a one-dimensional model (a.k.a. “tank”, bucket or box model). This is based on dominant hydrological processes, in particular saturation excess in the soil column, and identifying patterns of linkage between different landscape features. Average soil thickness was encountered at the range of decimetres, rarely above one metre. Both soil thickness and LU/LC features, such as terraced olive groves or forests as well as grassland or barren rock outcrops, were found to be highly formation specific. This linkage allowed us to further simplify the model and its requirements in a realistic manner for eight soil moisture stations, chosen at six different geological formations with typical soil and LU/LC representations. The main result of the model was the determination of formation-specific recharge coefficients, spatially ranging between 0 % and almost 60 % of annual rainfall or up to 300 mm a−1 in Wadi Natuf's climate. The karstified main aquifers showed recharge coefficients (RC) above 40 % and even the less prominent slightly aquitardal local aquifers reached RC values above 30 %. The model was separately tested on two conceptual levels: on the level of basin form (soil moisture) and basin response (signatures of peak recharge and local spring discharge events) under well-controlled conditions in isolated sub-catchments. In principle, our approach is applicable in many of the scarcely gauged karstic groundwater basins around the world with a highly diverse landscape and geology.


Author(s):  
Alla A. Semenuk

Congress of the International Association of Music Libraries, Archives and Documentation Centres will be the first time in Russia, in Moscow. The article describes the preparatory work for the Congress.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 959
Author(s):  
Benjamin Clark ◽  
Ruth DeFries ◽  
Jagdish Krishnaswamy

As part of its nationally determined contributions as well as national forest policy goals, India plans to boost tree cover to 33% of its land area. Land currently under other uses will require tree-plantations or reforestation to achieve this goal. This paper examines the effects of converting cropland to tree or forest cover in the Central India Highlands (CIH). The paper examines the impact of increased forest cover on groundwater infiltration and recharge, which are essential for sustainable Rabi (winter, non-monsoon) season irrigation and agricultural production. Field measurements of saturated hydraulic conductivity (Kfs) linked to hydrological modeling estimate increased forest cover impact on the CIH hydrology. Kfs tests in 118 sites demonstrate a significant land cover effect, with forest cover having a higher Kfs of 20.2 mm hr−1 than croplands (6.7mm hr−1). The spatial processes in hydrology (SPHY) model simulated forest cover from 2% to 75% and showed that each basin reacts differently, depending on the amount of agriculture under paddy. Paddy agriculture can compensate for low infiltration through increased depression storage, allowing for continuous infiltration and groundwater recharge. Expanding forest cover to 33% in the CIH would reduce groundwater recharge by 7.94 mm (−1%) when converting the average cropland and increase it by 15.38 mm (3%) if reforestation is conducted on non-paddy agriculture. Intermediate forest cover shows however shows potential for increase in net benefits.


2021 ◽  
Vol 29 (7) ◽  
pp. 2411-2428
Author(s):  
Robin K. Weatherl ◽  
Maria J. Henao Salgado ◽  
Maximilian Ramgraber ◽  
Christian Moeck ◽  
Mario Schirmer

AbstractLand-use changes often have significant impact on the water cycle, including changing groundwater/surface-water interactions, modifying groundwater recharge zones, and increasing risk of contamination. Surface runoff in particular is significantly impacted by land cover. As surface runoff can act as a carrier for contaminants found at the surface, it is important to characterize runoff dynamics in anthropogenic environments. In this study, the relationship between surface runoff and groundwater recharge in urban areas is explored using a top-down water balance approach. Two empirical models were used to estimate runoff: (1) an updated, advanced method based on curve number, followed by (2) bivariate hydrograph separation. Modifications were added to each method in an attempt to better capture continuous soil-moisture processes and explicitly account for runoff from impervious surfaces. Differences between the resulting runoff estimates shed light on the complexity of the rainfall–runoff relationship, and highlight the importance of understanding soil-moisture dynamics and their control on hydro(geo)logical responses. These results were then used as input in a water balance to calculate groundwater recharge. Two approaches were used to assess the accuracy of these groundwater balance estimates: (1) comparison to calculations of groundwater recharge using the calibrated conceptual HBV Light model, and (2) comparison to groundwater recharge estimates from physically similar catchments in Switzerland that are found in the literature. In all cases, recharge is estimated at approximately 40–45% of annual precipitation. These conditions were found to closely echo those results from Swiss catchments of similar characteristics.


Sign in / Sign up

Export Citation Format

Share Document