scholarly journals Subseasonal hydrometeorological ensemble predictions in small- and medium-sized mountainous catchments: benefits of the NWP approach

2019 ◽  
Vol 23 (1) ◽  
pp. 493-513 ◽  
Author(s):  
Samuel Monhart ◽  
Massimiliano Zappa ◽  
Christoph Spirig ◽  
Christoph Schär ◽  
Konrad Bogner

Abstract. Traditional ensemble streamflow prediction (ESP) systems are known to provide a valuable baseline to predict streamflows at the subseasonal to seasonal timescale. They exploit a combination of initial conditions and past meteorological observations, and can often provide useful forecasts of the expected streamflow in the upcoming month. In recent years, numerical weather prediction (NWP) models for subseasonal to seasonal timescales have made large progress and can provide added value to such a traditional ESP approach. Before using such meteorological predictions two major problems need to be solved: the correction of biases, and downscaling to increase the spatial resolution. Various methods exist to overcome these problems, but the potential of using NWP information and the relative merit of the different statistical and modelling steps remain open. To address this question, we compare a traditional ESP system with a subseasonal hydrometeorological ensemble prediction system in three alpine catchments with varying hydroclimatic conditions and areas between 80 and 1700 km2. Uncorrected and corrected (pre-processed) temperature and precipitation reforecasts from the ECMWF subseasonal NWP model are used to run the hydrological simulations and the performance of the resulting streamflow predictions is assessed with commonly used verification scores characterizing different aspects of the forecasts (ensemble mean and spread). Our results indicate that the NWP-based approach can provide superior prediction to the ESP approach, especially at shorter lead times. In snow-dominated catchments the pre-processing of the meteorological input further improves the performance of the predictions. This is most pronounced in late winter and spring when snow melting occurs. Moreover, our results highlight the importance of snow-related processes for subseasonal streamflow predictions in mountainous regions.

2018 ◽  
Author(s):  
Samuel Monhart ◽  
Massimiliano Zappa ◽  
Christoph Spirig ◽  
Christoph Schär ◽  
Konrad Bogner

Abstract. Traditional Ensemble Streamflow Prediction systems (ESP) are known to provide a valuable baseline to predict streamflows at the subseasonal to seasonal timescale. They exploit a combination of initial conditions and past meteorological observations, and can often provide useful forecasts of the expected streamflow in the upcoming month. In recent years, numerical weather prediction (NWP) models for subseasonal to seasonal timescales have made large progress and can provide added value to such a traditional ESP approach. Prior of using such meteorological predictions two major problems need to be solved: the correction of biases, and downscaling to account to increase the spatial resolution. Various methods exist to overcome these problems, but the potential of using NWP information and the relative merit of the different statistical and modeling steps remains open. To address this question, we compare a traditional ESP system with a subseasonal hydrometeorological ensemble prediction system in three alpine catchments with varying hydroclimatic conditions with areas between 80 and 1700 km2. Uncorrected and corrected (pre-processed) temperature and precipitation reforecasts from the ECMWF subseasonal NWP model are used to run the hydrological simulations and the performance of the resulting streamflow predictions is assessed with commonly used verification scores characterizing different aspects of the forecasts (ensemble mean and spread). Our results indicate that the NWP based approach can provide superior prediction than the ESP approach, especially at shorter lead times. In snow-dominated catchments the pre-processing of the meteorological input further improves the performance of the predictions. This is most pronounced in late winter and spring when snow melting occurs. Moreover, our results highlight the importance of snow related processes for subseasonal streamflow predictions in mountainous regions.


2017 ◽  
Vol 145 (5) ◽  
pp. 1919-1935 ◽  
Author(s):  
Lisa Bengtsson ◽  
Ulf Andrae ◽  
Trygve Aspelien ◽  
Yurii Batrak ◽  
Javier Calvo ◽  
...  

Abstract The aim of this article is to describe the reference configuration of the convection-permitting numerical weather prediction (NWP) model HARMONIE-AROME, which is used for operational short-range weather forecasts in Denmark, Estonia, Finland, Iceland, Ireland, Lithuania, the Netherlands, Norway, Spain, and Sweden. It is developed, maintained, and validated as part of the shared ALADIN–HIRLAM system by a collaboration of 26 countries in Europe and northern Africa on short-range mesoscale NWP. HARMONIE–AROME is based on the model AROME developed within the ALADIN consortium. Along with the joint modeling framework, AROME was implemented and utilized in both northern and southern European conditions by the above listed countries, and this activity has led to extensive updates to the model’s physical parameterizations. In this paper the authors present the differences in model dynamics and physical parameterizations compared with AROME, as well as important configuration choices of the reference, such as lateral boundary conditions, model levels, horizontal resolution, model time step, as well as topography, physiography, and aerosol databases used. Separate documentation will be provided for the atmospheric and surface data-assimilation algorithms and observation types used, as well as a separate description of the ensemble prediction system based on HARMONIE–AROME, which is called HarmonEPS.


2011 ◽  
Vol 29 ◽  
pp. 1-11 ◽  
Author(s):  
A. Randrianasolo ◽  
M. H. Ramos ◽  
V. Andréassian

Abstract. In flow forecasting, additionally to the need of long time series of historic discharges for model setup and calibration, hydrological models also need real-time discharge data for the updating of the initial conditions at the time of the forecasts. The need of data challenges operational flow forecasting at ungauged or poorly gauged sites. This study evaluates the performance of different choices of parameter sets and discharge updates to run a flow forecasting model at ungauged sites, based on information from neighbour catchments. A cross-validation approach is applied on a set of 211 catchments in France and a 17-month forecasting period is used to calculate skill scores and evaluate the quality of the forecasts. A reference situation, where local information is available, is compared to alternative situations, which include scenarios where no local data is available at all and scenarios where local data started to be collected at the beginning of the forecasting period. To cope with uncertainties from rainfall forecasts, the model is driven by ensemble weather forecasts from the PEARP-Météo-France ensemble prediction system. The results show that neighbour catchments can contribute to provide forecasts of good quality at ungauged sites, especially with the transfer of parameter sets for model simulation. The added value of local data for the operational updating of the hydrological ensemble forecasts is highlighted.


2021 ◽  
Author(s):  
Mohammed Amine Bessar ◽  
François Anctil ◽  
Pascal Matte

<p>The quality of water level predictions is highly dependent on the success of the flow forecasts that inform the hydraulic model. Ensemble predictions, by considering several sources of uncertainty, provide more accurate and reliable forecasts. In this project, we aim to evaluate a water level ensemble prediction system coupling a hydraulic model to an ensemble streamflow prediction system accounting for 3 sources of uncertainty: meteorological data, hydrological processing (multimodel) and data assimilation to update the initial conditions. The hydraulic model is previously calibrated and validated and the roughness coefficients are adapted as a function of flow according to predefined relationships developed for several river segments. The forecasts reliability and accuracy are then assessed at each layer of the forecasting system and the outcomes are illustrated comparing the ensembles skills and reliability for the considered events. Overall, the results show that accounting of the hydrometeorological uncertainty improves the performances of the water level forecasts for different lead times.</p>


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Matteo Mana ◽  
Davide Astolfi ◽  
Francesco Castellani ◽  
Cathérine Meißner

Abstract The importance of accurately forecasting the power production of wind farms is boosting the development of meteorological models and their processing. This work is a discussion of different forecast configurations for predicting the day ahead production of a wind farm sited in a moderately complex terrain. The numerical weather prediction (NWP) model MetCoOp Ensemble Prediction System with 2.5 km resolution focusing on the wind farm area is dynamically downscaled by the computational fluid model (CFD) model WindSim. The transfer of the NWP model to the CFD model can be done using NWP results from various heights above ground and using all or parts of the nodes of the NWP model within the wind farm area. In this work, many different forecasting configurations are validated and the impact on the forecast performance is discussed. The NWP-CFD downscaling results are compared to a day ahead forecast obtained through ANN methods and to the observed production. The main result of this work is that a deterministic downscaling method like CFD simulations can perform as good or better than statistical approaches when using high-resolution NWP models and more NWP model data.


2010 ◽  
Vol 25 (5) ◽  
pp. 1568-1573 ◽  
Author(s):  
Takemasa Miyoshi ◽  
Takuya Komori ◽  
Hitoshi Yonehara ◽  
Ryota Sakai ◽  
Munenhiko Yamaguchi

Abstract The operational numerical weather prediction (NWP) systems at the Japan Meteorological Agency (JMA) indicated that the typhoon track forecasts made by the control member of the ensemble prediction system (EPS) tended to be worse than those made by the high-resolution global NWP. The control forecast of the EPS with horizontal triangular truncation at 319 wavenumbers and 60 vertical levels (T319/L60 resolution) was initialized by eliminating the higher-wavenumber components of the global analysis at T959/L60 resolution. When the data assimilation cycle was performed at the lower T319/L60 resolution, the forecast gave typhoon track forecasts closer to the high-resolution global NWP. Therefore, it stands to reason that the resolution transform of the initial condition must be responsible for the degradation of the typhoon track forecasts at least to considerable extent. To improve the low-resolution forecast, two approaches are tested in this study: 1) applying a smoother spectral truncation for the resolution transform and 2) performing noncycled lower-resolution data assimilation during preprocessing. Results from the single case study of Typhoon Nuri (2008) indicate almost no impact from the former approach, but a significant positive impact when using the latter approach. The results of this study illuminate the importance of considering a model’s resolving capability during data assimilation. Namely, if the initial conditions contain features caused by unresolved scales, degraded forecasts may result.


2018 ◽  
Vol 146 (10) ◽  
pp. 3481-3498 ◽  
Author(s):  
Angela Benedetti ◽  
Frédéric Vitart

Abstract The fact that aerosols are important players in Earth’s radiation balance is well accepted by the scientific community. Several studies have shown the importance of characterizing aerosols in order to constrain surface radiative fluxes and temperature in climate runs. In numerical weather prediction, however, there has not been definite proof that interactive aerosol schemes are needed to improve the forecast. Climatologies are instead used that allow for computational efficiency and reasonable accuracy. At the monthly to subseasonal range, it is still worth investigating whether aerosol variability could afford some predictability, considering that it is likely that persisting aerosol biases might manifest themselves more over time scales of weeks to months and create a nonnegligible forcing. This paper explores this hypothesis using the ECMWF’s Ensemble Prediction System for subseasonal prediction with interactive prognostic aerosols. Four experiments are conducted with the aim of comparing the monthly prediction by the default system, which uses aerosol climatologies, with the prediction using radiatively interactive aerosols. Only the direct aerosol effect is considered. Twelve years of reforecasts with 50 ensemble members are analyzed on the monthly scale. Results indicate that the interactive aerosols have the capability of improving the subseasonal prediction at the monthly scales for the spring/summer season. It is hypothesized that this is due to the aerosol variability connected to the different phases of the Madden–Julian oscillation, particularly that of dust and carbonaceous aerosols. The degree of improvement depends crucially on the aerosol initialization. More work is required to fully assess the potential of interactive aerosols to increase predictability at the subseasonal scales.


2011 ◽  
Vol 11 (11) ◽  
pp. 30457-30485 ◽  
Author(s):  
P. Groenemeijer ◽  
G. C. Craig

Abstract. The stochastic Plant-Craig scheme for deep convection was implemented in the COSMO mesoscale model and used for ensemble forecasting. Ensembles consisting of 100 48 h forecasts at 7 km horizontal resolution were generated for a 2000 × 2000 km domain covering central Europe. Forecasts were made for seven case studies and characterized by different large-scale meteorological environments. Each 100 member ensemble consisted of 10 groups of 10 members, with each group driven by boundary and initial conditions from a selected member from the global ECMWF Ensemble Prediction System. The precipitation variability within and among these groups of members was computed, and it was found that the relative contribution to the ensemble variance introduced by the stochastic convection scheme was substantial, amounting to as much as 76% of the total variance in the ensemble in one of the studied cases. The impact of the scheme was not confined to the grid scale, and typically contributed 25–50% of the total variance even after the precipitation fields had been smoothed to a resolution of 35 km. The variability of precipitation introduced by the scheme was approximately proportional to the total amount of convection that occurred, while the variability due to large-scale conditions changed from case to case, being highest in cases exhibiting strong mid-tropospheric flow and pronounced meso- to synoptic scale vorticity extrema. The stochastic scheme was thus found to be an important source of variability in precipitation cases of weak large-scale flow lacking strong vorticity extrema, but high convective activity.


2020 ◽  
Vol 12 (7) ◽  
pp. 1147
Author(s):  
Yanhui Xie ◽  
Min Chen ◽  
Jiancheng Shi ◽  
Shuiyong Fan ◽  
Jing He ◽  
...  

The Advanced Technology Microwave Sounder (ATMS) mounted on the Suomi National Polar-Orbiting Partnership (NPP) satellite can provide both temperature and humidity information for a weather prediction model. Based on the rapid-refresh multi-scale analysis and prediction system—short-term (RMAPS-ST), we investigated the impact of ATMS radiance data assimilation on strong rainfall forecasts. Two groups of experiments were conducted to forecast heavy precipitation over North China between 18 July and 20 July 2016. The initial conditions and forecast results from the two groups of experiments have been compared and evaluated against observations. In comparison with the first group of experiments that only assimilated conventional observations, some added value can be obtained for the initial conditions of temperature, humidity, and wind fields after assimilating ATMS radiance observations in the system. For the forecast results with the assimilation of ATMS radiances, the score skills of quantitative forecast rainfall have been improved when verified against the observed rainfall. The Heidke skill score (HSS) skills of 6-h accumulated precipitation in the 24-h forecasts were overall increased, more prominently so for the heavy rainfall above 25 mm in the 0–6 h of forecasts. Assimilating ATMS radiance data reduced the false alarm ratio of quantitative precipitation forecasting in the 0–12 h of the forecast range and thus improved the threat scores for the heavy rainfall storm. Furthermore, the assimilation of ATMS radiances improved the spatial distribution of hourly rainfall forecast with observations compared with that of the first group of experiments, and the mean absolute error was reduced in the 10-h lead time of forecasts. The inclusion of ATMS radiances provided more information for the vertical structure of features in the temperature and moisture profiles, which had an indirect positive impact on the forecasts of the heavy rainfall in the RMAPS-ST system. However, the deviation in the location of the heavy rainfall center requires future work.


Author(s):  
Antonio Parodi ◽  
Martina Lagasio ◽  
Agostino N. Meroni ◽  
Flavio Pignone ◽  
Francesco Silvestro ◽  
...  

AbstractBetween the 4th and the 6th of November 1994, Piedmont and the western part of Liguria (two regions in north-western Italy) were hit by heavy rainfalls that caused the flooding of the Po, the Tanaro rivers and several of their tributaries, causing 70 victims and the displacement of over 2000 people. At the time of the event, no early warning system was in place and the concept of hydro-meteorological forecasting chain was in its infancy, since it was still limited to a reduced number of research applications, strongly constrained by coarse-resolution modelling capabilities both on the meteorological and the hydrological sides. In this study, the skills of the high-resolution CIMA Research Foundation operational hydro-meteorological forecasting chain are tested in the Piedmont 1994 event. The chain includes a cloud-resolving numerical weather prediction (NWP) model, a stochastic rainfall downscaling model, and a continuous distributed hydrological model. This hydro-meteorological chain is tested in a set of operational configurations, meaning that forecast products are used to initialise and force the atmospheric model at the boundaries. The set consists of four experiments with different options of the microphysical scheme, which is known to be a critical parameterisation in this kind of phenomena. Results show that all the configurations produce an adequate and timely forecast (about 2 days ahead) with realistic rainfall fields and, consequently, very good peak flow discharge curves. The added value of the high resolution of the NWP model emerges, in particular, when looking at the location of the convective part of the event, which hit the Liguria region.


Sign in / Sign up

Export Citation Format

Share Document