scholarly journals Estimating daily evapotranspiration based on a model of evaporative fraction (EF) for mixed pixels

2019 ◽  
Vol 23 (2) ◽  
pp. 949-969
Author(s):  
Fugen Li ◽  
Xiaozhou Xin ◽  
Zhiqing Peng ◽  
Qinhuo Liu

Abstract. Currently, applications of remote sensing evapotranspiration (ET) products are limited by the coarse resolution of satellite remote sensing data caused by land surface heterogeneities and the temporal-scale extrapolation of the instantaneous latent heat flux (LE) based on satellite overpass time. This study proposes a simple but efficient model (EFAF) for estimating the daily ET of remotely sensed mixed pixels using a model of the evaporative fraction (EF) and area fraction (AF) to increase the accuracy of ET estimate over heterogeneous land surfaces. To accomplish this goal, we derive an equation for calculating the EF of mixed pixels based on two key hypotheses. Hypothesis 1 states that the available energy (AE) of each sub-pixel is approximately equal to that of any other sub-pixels in the same mixed pixel within an acceptable margin of error and is equivalent to the AE of the mixed pixel. This approach simplifies the equation, and uncertainties and errors related to the estimated ET values are minor. Hypothesis 2 states that the EF of each sub-pixel is equal to that of the nearest pure pixel(s) of the same land cover type. This equation is designed to correct spatial-scale errors for the EF of mixed pixels; it can be used to calculate daily ET from daily AE data. The model was applied to an artificial oasis located in the midstream area of the Heihe River using HJ-1B satellite data with a 300 m resolution. The results generated before and after making corrections were compared and validated using site data from eddy covariance systems. The results show that the new model can significantly improve the accuracy of daily ET estimates relative to the lumped method; the coefficient of determination (R2) increased to 0.82 from 0.62, the root mean square error (RMSE) decreased to 1.60 from 2.47 MJ m−2(decreased approximately to 0.64 from 0.99 mm) and the mean bias error (MBE) decreased from 1.92 to 1.18 MJ m−2 (decreased from approximately 0.77 to 0.47 mm). It is concluded that EFAF can reproduce daily ET with reasonable accuracy; can be used to produce the ET product; and can be applied to hydrology research, precision agricultural management and monitoring natural ecosystems in the future.

2018 ◽  
Author(s):  
Fugen Li ◽  
Xiaozhou Xin ◽  
Zhiqing Peng ◽  
Qinhuo Liu

Abstract. Currently, applications of remote sensing evapotranspiration (ET) products are limited by the low resolution of satellite remote sensing data caused by land surface heterogeneities and the temporal scale extrapolation of the instantaneous latent heat flux (LE) based on satellite overpass time. This study proposes a simple but efficient model (EFAF) for estimating the daily ET of remotely sensed mixed pixels using a model of the evapotranspiration fraction (EF) and area fraction (AF). To accomplish this goal, we derive an equation for calculating the EF of mixed pixels based on two key hypotheses. Hypothesis 1 states that the available energy (AE) of each sub-pixel is approximately equal to that of any other sub-pixels in the same mixed pixel within an acceptable margin of bias and is equivalent to the AE of the mixed pixel. This approach simplifies the equation, and uncertainties and errors related to the estimated ET values are minor. Hypothesis 2 states that the EF of each sub-pixel is equal to that of the nearest pure pixel(s) of the same land cover type. This equation is designed to correct spatial scale errors for the EF of mixed pixels; it can be used to calculate daily ET from daily AE data. The model was applied to an artificial oasis located in the midstream area of the Heihe River using HJ-1B satellite data with a 300 m resolution. Results generated before and after making corrections were compared and validated using sites data from eddy covariance systems. The results show that the new model can significantly improve the accuracy of daily ET estimates relative to the lumped method; the coefficient of determination (R2) increased to 0.82 from 0.62, the root mean square error (RMSE) decreased to 1.60 from 2.47 MJ·m−2, and the mean bias error (MBE) decreased from 1.92 to 1.18 MJ·m−2.


2016 ◽  
Author(s):  
Z. Q. Peng ◽  
X. Z. Xin ◽  
J. J. Jiao ◽  
T. Zhou ◽  
Q. H. Liu

Abstract. Evapotranspiration (ET) plays an important role in surface-atmosphere interactions. Remote sensing has long been identified as a technology that is capable of monitoring ET. However, spatial problems greatly affect the accuracy of ET retrievals by satellite. The objective of this paper is to reduce the spatial-scale uncertainty produced by surface heterogeneity using Chinese HJ-1B data. Two upscaling schemes with area-weighting aggregation for different steps and variables were applied. One scheme is input parameter upscaling (IPUS), which refers to parameter aggregation, and the other is temperature sharpening and flux aggregation (TSFA). Footprint validation results show that TSFA is more accurate and less uncertain than IPUS, and additional analysis shows that TSFA can capture land surface heterogeneities and integrate the effect of overlooked land types in the mixed pixel.


2021 ◽  
Vol 13 (11) ◽  
pp. 2121
Author(s):  
Changsuk Lee ◽  
Kyunghwa Lee ◽  
Sangmin Kim ◽  
Jinhyeok Yu ◽  
Seungtaek Jeong ◽  
...  

This study proposes an improved approach for monitoring the spatial concentrations of hourly particulate matter less than 2.5 μm in diameter (PM2.5) via a deep neural network (DNN) using geostationary ocean color imager (GOCI) images and unified model (UM) reanalysis data over the Korean Peninsula. The DNN performance was optimized to determine the appropriate training model structures, incorporating hyperparameter tuning, regularization, early stopping, and input and output variable normalization to prevent training dataset overfitting. Near-surface atmospheric information from the UM was also used as an input variable to spatially generalize the DNN model. The retrieved PM2.5 from the DNN was compared with estimates from random forest, multiple linear regression, and the Community Multiscale Air Quality model. The DNN demonstrated the highest accuracy compared to that of the conventional methods for the hold-out validation (root mean square error (RMSE) = 7.042 μg/m3, mean bias error (MBE) = −0.340 μg/m3, and coefficient of determination (R2) = 0.698) and the cross-validation (RMSE = 9.166 μg/m3, MBE = 0.293 μg/m3, and R2 = 0.49). Although the R2 was low due to underestimated high PM2.5 concentration patterns, the RMSE and MBE demonstrated reliable accuracy values (<10 μg/m3 and 1 μg/m3, respectively) for the hold-out validation and cross-validation.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1207
Author(s):  
Gonçalo C. Rodrigues ◽  
Ricardo P. Braga

This study aims to evaluate NASA POWER reanalysis products for daily surface maximum (Tmax) and minimum (Tmin) temperatures, solar radiation (Rs), relative humidity (RH) and wind speed (Ws) when compared with observed data from 14 distributed weather stations across Alentejo Region, Southern Portugal, with a hot summer Mediterranean climate. Results showed that there is good agreement between NASA POWER reanalysis and observed data for all parameters, except for wind speed, with coefficient of determination (R2) higher than 0.82, with normalized root mean square error (NRMSE) varying, from 8 to 20%, and a normalized mean bias error (NMBE) ranging from –9 to 26%, for those variables. Based on these results, and in order to improve the accuracy of the NASA POWER dataset, two bias corrections were performed to all weather variables: one for the Alentejo Region as a whole; another, for each location individually. Results improved significantly, especially when a local bias correction is performed, with Tmax and Tmin presenting an improvement of the mean NRMSE of 6.6 °C (from 8.0 °C) and 16.1 °C (from 20.5 °C), respectively, while a mean NMBE decreased from 10.65 to 0.2%. Rs results also show a very high goodness of fit with a mean NRMSE of 11.2% and mean NMBE equal to 0.1%. Additionally, bias corrected RH data performed acceptably with an NRMSE lower than 12.1% and an NMBE below 2.1%. However, even when a bias correction is performed, Ws lacks the performance showed by the remaining weather variables, with an NRMSE never lower than 19.6%. Results show that NASA POWER can be useful for the generation of weather data sets where ground weather stations data is of missing or unavailable.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 396
Author(s):  
Junxia Yan ◽  
Yanfei Ma ◽  
Dongyun Zhang ◽  
Zechen Li ◽  
Weike Zhang ◽  
...  

Land surface evapotranspiration (ET) and gross primary productivity (GPP) are critical components in terrestrial ecosystems with water and carbon cycles. Large-scale, high-resolution, and accurately quantified ET and GPP values are important fundamental data for freshwater resource management and help in understanding terrestrial carbon and water cycles in an arid region. In this study, the revised surface energy balance system (SEBS) model and MOD17 GPP algorithm were used to estimate daily ET and GPP at 100 m resolution based on multi-source satellite remote sensing data to obtain surface biophysical parameters and meteorological forcing data as input variables for the model in the midstream oasis area of the Heihe River Basin (HRB) from 2010 to 2016. Then, we further calculated the ecosystem water-use efficiency (WUE). We validated the daily ET, GPP, and WUE from ground observations at a crop oasis station and conducted spatial intercomparisons of monthly and annual ET, GPP, and WUE at the irrigation district and cropland oasis scales. The site-level evaluation results show that ET and GPP had better performance than WUE at the daily time scale. Specifically, the deviations in the daily ET, GPP, and WUE data compared with ground observations were small, with a root mean square error (RMSE) and mean absolute percent error (MAPE) of 0.75 mm/day and 26.59%, 1.13 gC/m2 and 36.62%, and 0.50 gC/kgH2O and 39.83%, respectively. The regional annual ET, GPP, and WUE varied from 300 to 700 mm, 200 to 650 gC/m2, and 0.5 to 1.0 gC/kgH2O, respectively, over the entire irrigation oasis area. It was found that annual ET and GPP were greater than 550 mm and 500 gC/m2, and annual oasis cropland WUE had strong invariability and was maintained at approximately 0.85 gC/kgH2O. The spatial intercomparisons from 2010 to 2016 revealed that ET had similar spatial patterns to GPP due to tightly coupled carbon and water fluxes. However, the WUE spatiotemporal patterns were slightly different from both ET and GPP, particularly in the early and late growing seasons for the oasis area. Our results demonstrate that spatial full coverage and reasonably fine spatiotemporal variation and variability could significantly improve our understanding of water-saving irrigation strategies and oasis agricultural water management practices in the face of water shortage issues.


2021 ◽  
Vol 13 (14) ◽  
pp. 2805
Author(s):  
Hongwei Sun ◽  
Junyu He ◽  
Yihui Chen ◽  
Boyu Zhao

Sea surface partial pressure of CO2 (pCO2) is a critical parameter in the quantification of air–sea CO2 flux, which plays an important role in calculating the global carbon budget and ocean acidification. In this study, we used chlorophyll-a concentration (Chla), sea surface temperature (SST), dissolved and particulate detrital matter absorption coefficient (Adg), the diffuse attenuation coefficient of downwelling irradiance at 490 nm (Kd) and mixed layer depth (MLD) as input data for retrieving the sea surface pCO2 in the North Atlantic based on a remote sensing empirical approach with the Categorical Boosting (CatBoost) algorithm. The results showed that the root mean square error (RMSE) is 8.25 μatm, the mean bias error (MAE) is 4.92 μatm and the coefficient of determination (R2) can reach 0.946 in the validation set. Subsequently, the proposed algorithm was applied to the sea surface pCO2 in the North Atlantic Ocean during 2003–2020. It can be found that the North Atlantic sea surface pCO2 has a clear trend with latitude variations and have strong seasonal changes. Furthermore, through variance analysis and EOF (empirical orthogonal function) analysis, the sea surface pCO2 in this area is mainly affected by sea temperature and salinity, while it can also be influenced by biological activities in some sub-regions.


2021 ◽  
Vol 13 (8) ◽  
pp. 1516
Author(s):  
Boyang Li ◽  
Yaokui Cui ◽  
Xiaozhuang Geng ◽  
Huan Li

Evapotranspiration (ET) of soil-vegetation system is the main process of the water and energy exchange between the atmosphere and the land surface. Spatio-temporal continuous ET is vitally important to agriculture and ecological applications. Surface temperature and vegetation index (Ts-VI) triangle ET model based on remote sensing land surface temperature (LST) is widely used to monitor the land surface ET. However, a large number of missing data caused by the presence of clouds always reduces the availability of the main parameter LST, thus making the remote sensing-based ET estimation unavailable. In this paper, a method to improve the availability of ET estimates from Ts-VI model is proposed. Firstly, continuous LST product of the time series is obtained using a reconstruction algorithm, and then, the reconstructed LST is applied to the estimate ET using the Ts-VI model. The validation in the Heihe River Basin from 2009 to 2011 showed that the availability of ET estimates is improved from 25 days per year (d/yr) to 141 d/yr. Compared with the in situ data, a very good performance of the estimated ET is found with RMSE 1.23 mm/day and R2 0.6257 at point scale and RMSE 0.32 mm/day and R2 0.8556 at regional scale. This will improve the understanding of the water and energy exchange between the atmosphere and the land surface, especially under cloudy conditions.


Food Research ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 703-711
Author(s):  
A.S. Ajala ◽  
P.O. Ngoddy ◽  
J.O. Olajide

Cassava roots are susceptible to deterioration with 24 hrs of harvest; it needs processing into a more stable material such as dried cassava chips to extend its shelf life for long storage. However, improper knowledge of the effect of atmospheric relative humidity on these dried chips during storage makes it mouldy and unacceptable. This work aimed at studying the effect of sorption isotherms on the dried cassava chips. In this study, adsorption and desorption isotherm were carried out using static gravimetric method and data for equilibrium moisture content (EMC) were generated at five (5) temperatures (53, 60, 70, 80, 86oC). These were fitted into four (4) isotherm-models [Oswin, Peleg, the Modified Oswin and GAB]. The statistical criteria to test the models were coefficient of determination (R2 ), reduced chi-square (χ 2 ), root mean square error (RMSE) and mean bias error (MBE). The values of EMC ranged from 7.21-12.44% wb. The values of R2 ranged from 0.95-0.99; χ 2 ranged from 0.008-0.14; RMSE values ranged from 0.06-0.254 while MBE values ranged from -0.0004-1.1E-5. The values of isosteric heat of sorption calculated from the isosteres recorded a range from 6.579 to 67.829 kJ/mole. The Pelegmodel gave the best fit in the relative humidity range of 10 to 80%. The values of EMC show that the chips can have a stable shelf life without spoilage.


2021 ◽  
Author(s):  
Jin Ma ◽  
Ji Zhou

&lt;p&gt;As an important indicator of land-atmosphere energy interaction, land surface temperature (LST) plays an important role in the research of climate change, hydrology, and various land surface processes. Compared with traditional ground-based observation, satellite remote sensing provides the possibility to retrieve LST more efficiently over a global scale. Since the lack of global LST before, Ma et al., (2020) released a global 0.05 &amp;#215;0.05&amp;#160; long-term (1981-2000) LST based on NOAA-7/9/11/14 AVHRR. The dataset includes three layers: (1) instantaneous LST, a product generated based on an ensemble of several split-window algorithms with a random forest (RF-SWA); (2) orbital-drift-corrected (ODC) LST, a drift-corrected version of RF-SWA LST at 14:30 solar time; and (3) monthly averages of ODC LST. To meet the requirement of the long-term application, e.g. climate change, the period of the LST is extended from 1981-2000 to 1981-2020 in this study. The LST from 2001 to 2020 are retrieved from NOAA-16/18/19 AVHRR with the same algorithm for NOAA-7/8/11/14 AVHRR. The train and test results based on the simulation data from SeeBor and TIGR atmospheric profiles show that the accuracy of the RF-SWA method for the three sensors is consistent with the previous four sensors, i.e. the mean bias error and standard deviation less than 0.10 K and 1.10 K, respectively, under the assumption that the maximum emissivity and water vapor content uncertainties are 0.04 and 1.0 g/cm&lt;sup&gt;2&lt;/sup&gt;, respectively. The preliminary validation against &lt;em&gt;in-situ&lt;/em&gt; LST also shows a similar accuracy, indicating that the accuracy of LST from 1981 to 2020 are consistent with each other. In the generation code, the new LST has been improved in terms of land surface emissivity estimation, identification of cloud pixel, and the ODC method in order to generate a more reliable LST dataset. Up to now, the new version LST product (1981-2020) is under generating and will be released soon in support of the scientific research community.&lt;/p&gt;


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ahmad Fudholi ◽  
Mohd Yusof Othman ◽  
Mohd Hafidz Ruslan ◽  
Kamaruzzaman Sopian

This study evaluated the performance of solar drying in the Malaysian red chili (Capsicum annuumL.). Red chilies were dried down from approximately 80% (wb) to 10% (wb) moisture content within 33 h. The drying process was conducted during the day, and it was compared with 65 h of open sun drying. Solar drying yielded a 49% saving in drying time compared with open sun drying. At the average solar radiation of 420 W/m2and air flow rate of 0.07 kg/s, the collector, drying system, and pickup demonstrated efficiency rates of approximately 28%, 13%, and 45%, respectively. Evaporative capacity ranged from 0.13 to 2.36 kg/h, with an average of 0.97 kg/h. The specific moisture extraction rate (SMER) of 0.19 kg/kWh was obtained. Moreover, the drying kinetics ofC. annuumL. were investigated. A nonlinear regression procedure was used to fit three drying models. These models were compared with experimental data on red chilies dried by open sun drying and those dried by solar drying. The fit quality of the models was evaluated using their coefficient of determination (R2), mean bias error, and root-mean-square error values. The Page model resulted in the highestR2and the lowest mean bias and root-mean-square errors.


Sign in / Sign up

Export Citation Format

Share Document