scholarly journals Sensitivity of meteorological-forcing resolution on hydrologic variables

2020 ◽  
Vol 24 (7) ◽  
pp. 3451-3474
Author(s):  
Fadji Z. Maina ◽  
Erica R. Siirila-Woodburn ◽  
Pouya Vahmani

Abstract. Projecting the spatiotemporal changes in water resources under a no-analog future climate requires physically based integrated hydrologic models which simulate the transfer of water and energy across the earth's surface. These models show promise in the context of unprecedented climate extremes given their reliance on the underlying physics of the system as opposed to empirical relationships. However, these techniques are plagued by several sources of uncertainty, including the inaccuracy of input datasets such as meteorological forcing. These datasets, usually derived from climate models or satellite-based products, are typically only resolved on the order of tens to hundreds of kilometers, while hydrologic variables of interest (e.g., discharge and groundwater levels) require a resolution at much smaller scales. In this work, a high-resolution hydrologic model is forced with various resolutions of meteorological forcing (0.5 to 40.5 km) generated by a dynamical downscaling analysis from the regional climate model Weather Research and Forecasting (WRF). The Cosumnes watershed, which spans the Sierra Nevada and Central Valley interface of California (USA), exhibits semi-natural flow conditions due to its rare undammed river basin and is used here as a test bed to illustrate potential impacts of various resolutions of meteorological forcing on snow accumulation and snowmelt, surface runoff, infiltration, evapotranspiration, and groundwater levels. Results show that the errors in spatial distribution patterns impact land surface processes and can be delayed in time. Localized biases in groundwater levels can be as large as 5–10 m and 3 m in surface water. Most hydrologic variables reveal that biases are seasonally and spatially dependent, which can have serious implications for model calibration and ultimately water management decisions.

2019 ◽  
Author(s):  
Fadji Z. Maina ◽  
Erica R. Siirila-Woodburn ◽  
Pouya Vahmani

Abstract. Projecting the spatio-temporal changes to water resources under a no-analog future climate requires physically-based integrated hydrologic models, which simulate the transfer of water and energy across the earth's surface. These models show promise in the context of unprecedented climate extremes given their reliance on the underlying physics of the system as opposed to empirical relationships. However, these techniques are plagued by several sources of uncertainty, including the inaccuracy of input datasets such as meteorological forcing. These datasets, usually derived from climate models or satellite-based products, typically have a resolution of several kilometers, while hydrologic metrics of interest (e.g. discharge, groundwater levels) require a resolution at much smaller scales. In this work, a high-resolution watershed model is forced with various resolutions (0.5 to 40.5 km) of meteorological forcing generated by a dynamical downscaling analysis based on a regional climate model (WRF) to assess how the uncertainties associated with the spatial resolution of meteorological forcing affect the simulated hydrology. The Cosumnes watershed, which spans the Sierra Nevada and Central Valley interface of California (USA), exhibits semi-natural flow conditions due to its rare un-dammed river basin and is used here as a testbed to illustrate potential impacts on snow accumulation and snowmelt, surface runoff, infiltration, evapotranspiration, and groundwater levels. Results show that localized biases in groundwater levels can be as large as 5–10 m and that other metric biases (e.g. ET and snowpack dynamics) are seasonally and spatially-dependent, but can have serious implications for model calibration and ultimately water management decisions.


2005 ◽  
Vol 9 (11) ◽  
pp. 1-21 ◽  
Author(s):  
Mark A. Snyder ◽  
Lisa C. Sloan

Abstract Regional climate models (RCMs) have improved our understanding of the effects of global climate change on specific regions. The need for realistic forcing has led to the use of fully coupled global climate models (GCMs) to produce boundary conditions for RCMs. The advantages of using fully coupled GCM output is that the global-scale interactions of all components of the climate system (ocean, sea ice, land surface, and atmosphere) are considered. This study uses an RCM, driven by a fully coupled GCM, to examine the climate of a region centered over California for the time periods 1980–99 and 2080–99. Statistically significant increases in mean monthly temperatures by up to 7°C are found for the entire state. Large changes in precipitation occur in northern California in February (increase of up to 4 mm day−1 or 30%) and March (decrease of up to 3 mm day−1 or 25%). However, in most months, precipitation changes between the cases were not statistically significant. Statistically significant decreases in snow accumulation of over 100 mm (50%) occur in some months. Temperature increases lead to decreases in snow accumulation that impact the hydrologic budget by shifting spring and summer runoff into the winter months, reinforcing results of other studies that used different models and driving conditions.


2017 ◽  
Vol 10 (2) ◽  
pp. 889-901 ◽  
Author(s):  
Daniel J. Lunt ◽  
Matthew Huber ◽  
Eleni Anagnostou ◽  
Michiel L. J. Baatsen ◽  
Rodrigo Caballero ◽  
...  

Abstract. Past warm periods provide an opportunity to evaluate climate models under extreme forcing scenarios, in particular high ( >  800 ppmv) atmospheric CO2 concentrations. Although a post hoc intercomparison of Eocene ( ∼  50  Ma) climate model simulations and geological data has been carried out previously, models of past high-CO2 periods have never been evaluated in a consistent framework. Here, we present an experimental design for climate model simulations of three warm periods within the early Eocene and the latest Paleocene (the EECO, PETM, and pre-PETM). Together with the CMIP6 pre-industrial control and abrupt 4 ×  CO2 simulations, and additional sensitivity studies, these form the first phase of DeepMIP – the Deep-time Model Intercomparison Project, itself a group within the wider Paleoclimate Modelling Intercomparison Project (PMIP). The experimental design specifies and provides guidance on boundary conditions associated with palaeogeography, greenhouse gases, astronomical configuration, solar constant, land surface processes, and aerosols. Initial conditions, simulation length, and output variables are also specified. Finally, we explain how the geological data sets, which will be used to evaluate the simulations, will be developed.


2021 ◽  
Vol 17 (4) ◽  
pp. 1665-1684
Author(s):  
Leonore Jungandreas ◽  
Cathy Hohenegger ◽  
Martin Claussen

Abstract. Global climate models experience difficulties in simulating the northward extension of the monsoonal precipitation over north Africa during the mid-Holocene as revealed by proxy data. A common feature of these models is that they usually operate on grids that are too coarse to explicitly resolve convection, but convection is the most essential mechanism leading to precipitation in the West African Monsoon region. Here, we investigate how the representation of tropical deep convection in the ICOsahedral Nonhydrostatic (ICON) climate model affects the meridional distribution of monsoonal precipitation during the mid-Holocene by comparing regional simulations of the summer monsoon season (July to September; JAS) with parameterized and explicitly resolved convection. In the explicitly resolved convection simulation, the more localized nature of precipitation and the absence of permanent light precipitation as compared to the parameterized convection simulation is closer to expectations. However, in the JAS mean, the parameterized convection simulation produces more precipitation and extends further north than the explicitly resolved convection simulation, especially between 12 and 17∘ N. The higher precipitation rates in the parameterized convection simulation are consistent with a stronger monsoonal circulation over land. Furthermore, the atmosphere in the parameterized convection simulation is less stably stratified and notably moister. The differences in atmospheric water vapor are the result of substantial differences in the probability distribution function of precipitation and its resulting interactions with the land surface. The parametrization of convection produces light and large-scale precipitation, keeping the soils moist and supporting the development of convection. In contrast, less frequent but locally intense precipitation events lead to high amounts of runoff in the explicitly resolved convection simulations. The stronger runoff inhibits the moistening of the soil during the monsoon season and limits the amount of water available to evaporation in the explicitly resolved convection simulation.


2012 ◽  
Vol 140 (10) ◽  
pp. 3259-3277 ◽  
Author(s):  
Chunxi Zhang ◽  
Yuqing Wang ◽  
Axel Lauer ◽  
Kevin Hamilton

Abstract The Weather Research and Forecasting (WRF) model V3.3 has been configured for the Hawaiian Islands as a regional climate model for the region (HRCM). This paper documents the model configuration and presents a preliminary evaluation based on a continuous 1-yr simulation forced by observed boundary conditions with 3-km horizontal grid spacing in the inner nested domain. The simulated vertical structure of the temperature and humidity are compared with twice-daily radiosonde observations at two stations. Generally the trade wind inversion (TWI) height and occurrence days are well represented. The simulation over the islands is compared with observations from nine surface climatological stations and a dense network of precipitation stations. The model simulation has generally small biases in the simulated surface temperature, relative humidity, and wind speed. The model realistically simulated the magnitude and geographical distribution of the mean rainfall over the Hawaiian Islands. In addition, the model simulation reproduced reasonably well the individual heavy rainfall events as seen from the time series of pentad mean rainfall averaged over island scales. Also the model reproduced the geographical variation of the mean diurnal rainfall cycle even though the observed diurnal cycle displays quite different features over different islands. Comparison with results obtained using the land surface dataset from the official release of the WRF model confirmed that the newly implemented land surface dataset generally improved the simulation of surface variables. These results demonstrate that the WRF can be a useful tool for dynamical downscaling of regional climate over the Hawaiian Islands.


2019 ◽  
Vol 20 (7) ◽  
pp. 1339-1357 ◽  
Author(s):  
Peter B. Gibson ◽  
Duane E. Waliser ◽  
Huikyo Lee ◽  
Baijun Tian ◽  
Elias Massoud

Abstract Climate model evaluation is complicated by the presence of observational uncertainty. In this study we analyze daily precipitation indices and compare multiple gridded observational and reanalysis products with regional climate models (RCMs) from the North American component of the Coordinated Regional Climate Downscaling Experiment (NA-CORDEX) multimodel ensemble. In the context of model evaluation, observational product differences across the contiguous United States (CONUS) are also deemed nontrivial for some indices, especially for annual counts of consecutive wet days and for heavy precipitation indices. Multidimensional scaling (MDS) is used to directly include this observational spread into the model evaluation procedure, enabling visualization and interpretation of model differences relative to a “cloud” of observational uncertainty. Applying MDS to the evaluation of NA-CORDEX RCMs reveals situations of added value from dynamical downscaling, situations of degraded performance from dynamical downscaling, and the sensitivity of model performance to model resolution. On precipitation days, higher-resolution RCMs typically simulate higher mean and extreme precipitation rates than their lower-resolution pairs, sometimes improving model fidelity with observations. These results document the model spread and biases in daily precipitation extremes across the full NA-CORDEX model ensemble. The often-large divergence between in situ observations, satellite data, and reanalysis, shown here for CONUS, is especially relevant for data-sparse regions of the globe where satellite and reanalysis products are extensively relied upon. This highlights the need to carefully consider multiple observational products when evaluating climate models.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1774
Author(s):  
Shuyi Wang ◽  
Mohammad Reza Najafi ◽  
Alex J. Cannon ◽  
Amir Ali Khan

Climate change can affect different drivers of flooding in low-lying coastal areas of the world, challenging the design and planning of communities and infrastructure. The concurrent occurrence of multiple flood drivers such as high river flows and extreme sea levels can aggravate such impacts and result in catastrophic damages. In this study, the individual and compound effects of riverine and coastal flooding are investigated at Stephenville Crossing located in the coastal-estuarine region of Newfoundland and Labrador (NL), Canada. The impacts of climate change on flood extents and depths and the uncertainties associated with temporal patterns of storms, intensity–duration–frequency (IDF) projections, spatial resolution, and emission scenarios are assessed. A hydrologic model and a 2D hydraulic model are set up and calibrated to simulate the flood inundation for the historical (1976–2005) as well as the near future (2041–2070) and far future (2071–2100) periods under Representative Concentration Pathways (RCPs) 4.5 and 8.5. Future storm events are generated based on projected IDF curves from convection-permitting Weather Research and Forecasting (WRF) climate model simulations, using SCS, Huff, and alternating block design storm methods. The results are compared with simulations based on projected IDF curves derived from statistically downscaled Global Climate Models (GCMs). Both drivers of flooding are projected to intensify in the future, resulting in higher risks of flooding in the study area. Compound riverine and coastal flooding results in more severe inundation, affecting the communities on the coastline and the estuary area. Results show that the uncertainties associated with storm hyetographs are considerable, which indicate the importance of accurate representation of storm patterns. Further, simulations based on projected WRF-IDF curves show higher risks of flooding compared to the ones associated with GCM-IDFs.


2012 ◽  
Vol 13 (2) ◽  
pp. 521-538 ◽  
Author(s):  
Emanuel Dutra ◽  
Pedro Viterbo ◽  
Pedro M. A. Miranda ◽  
Gianpaolo Balsamo

Abstract Three different complexity snow schemes implemented in the ECMWF land surface scheme Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) are evaluated within the EC-EARTH climate model. The snow schemes are (i) the original HTESSEL single-bulk-layer snow scheme, (ii) a new snow scheme in operations at ECMWF since September 2009, and (iii) a multilayer version of the previous. In offline site simulations, the multilayer scheme outperforms the single-layer schemes in deep snowpack conditions through its ability to simulate sporadic melting events thanks to the lower thermal inertial of the uppermost layer. Coupled atmosphere–land/snow simulations performed by the EC-EARTH climate model are validated against remote sensed snow cover and surface albedo. The original snow scheme has a systematic early melting linked to an underestimation of surface albedo during spring that was partially reduced with the new snow schemes. A key process to improve the realism of the near-surface atmospheric temperature and at the same time the soil freezing is the thermal insulation of the snowpack (tightly coupled with the accuracy of snow mass and density simulations). The multilayer snow scheme outperforms the single-layer schemes in open deep snowpack (such as prairies or tundra in northern latitudes) and is instead comparable in shallow snowpack conditions. However, the representation of orography in current climate models implies limitations for accurately simulating the snowpack, particularly over complex terrain regions such as the Rockies and the Himalayas.


1994 ◽  
Vol 18 (1) ◽  
pp. 1-15 ◽  
Author(s):  
David Greenland

Common types of satellite-derived measurements are reviewed with respect to how they are used to provide information on variables important to land surface climatology. The variables considered include solar radiation, surface albedo, surface temperature, outgoing longwave radiation, cloud cover, net radiation, soil moisture, latent and sensible heat flux, surface cover and leaf area index. A selection of land surface climate modelling schemes is identified and considered with a view to their practicality for use with satellite-derived data. Issues arising from the foregoing considerations include the absence from satellite data of some variables required by land surface climate models, the importance of extreme pixel values in model parameterization, the importance of matching spatial resolution in satellite data and climate model, and the need to have concurrent, independently observed, meteorological data in order to make full use of the satellite data.


2015 ◽  
Vol 96 (11) ◽  
pp. 1895-1912 ◽  
Author(s):  
Xing Yuan ◽  
Joshua K. Roundy ◽  
Eric F. Wood ◽  
Justin Sheffield

Abstract Seasonal hydrologic extremes in the form of droughts and wet spells have devastating impacts on human and natural systems. Improving understanding and predictive capability of hydrologic extremes, and facilitating adaptations through establishing climate service systems at regional to global scales are among the grand challenges proposed by the World Climate Research Programme (WCRP) and are the core themes of the Regional Hydroclimate Projects (RHP) under the Global Energy and Water Cycle Experiment (GEWEX). An experimental global seasonal hydrologic forecasting system has been developed that is based on coupled climate forecast models participating in the North American Multimodel Ensemble (NMME) project and an advanced land surface hydrologic model. The system is evaluated over major GEWEX RHP river basins by comparing with ensemble streamflow prediction (ESP). The multimodel seasonal forecast system provides higher detectability for soil moisture droughts, more reliable low and high f low ensemble forecasts, and better “real time” prediction for the 2012 North American extreme drought. The association of the onset of extreme hydrologic events with oceanic and land precursors is also investigated based on the joint distribution of forecasts and observations. Climate models have a higher probability of missing the onset of hydrologic extremes when there is no oceanic precursor. But oceanic precursor alone is insufficient to guarantee a correct forecast—a land precursor is also critical in avoiding a false alarm for forecasting extremes. This study is targeted at providing the scientific underpinning for the predictability of hydrologic extremes over GEWEX RHP basins and serves as a prototype for seasonal hydrologic forecasts within the Global Framework for Climate Services (GFCS).


Sign in / Sign up

Export Citation Format

Share Document