scholarly journals Streamflow drought: implication of drought definitions and its application for drought forecasting

2021 ◽  
Vol 25 (7) ◽  
pp. 3991-4023
Author(s):  
Samuel J. Sutanto ◽  
Henny A. J. Van Lanen

Abstract. Streamflow drought forecasting is a key element of contemporary drought early warning systems (DEWS). The term streamflow drought forecasting (not streamflow forecasting), however, has created confusion within the scientific hydrometeorological community as well as in operational weather and water management services. Streamflow drought forecasting requires an additional step, which is the application of a drought identification method to the forecasted streamflow time series. The way streamflow drought is identified is the main reason for this misperception. The purpose of this study, therefore, is to provide a comprehensive overview of the differences between different drought identification approaches to identify droughts in European rivers, including an analysis of both historical drought and implications for forecasting. Streamflow data were obtained from the LISFLOOD hydrological model forced with gridded meteorological observations (known as LISFLOOD-Simulation Forced with Observed, SFO). The same model fed with seasonal meteorological forecasts of the European Centre for Medium-Range Weather Forecasts system 5 (ECMWF SEAS 5) was used to obtain the forecasted streamflow. Streamflow droughts were analyzed using the daily and monthly variable threshold methods (VTD and VTM, respectively), the daily and monthly fixed threshold methods (FTD and FTM, respectively), and the Standardized Streamflow Index (SSI). Our results clearly show that streamflow droughts derived from different approaches deviate from each other in their characteristics, which also vary in different climate regions across Europe. The daily threshold methods (FTD and VTD) identify 25 %–50 % more drought events than the monthly threshold methods (FTM and VTM), and accordingly the average drought duration is longer for the monthly than for the daily threshold methods. The FTD and FTM, in general, identify drought occurrences earlier in the year than the VTD and VTM. In addition, the droughts obtained with the VTM and FTM approaches also have higher drought deficit volumes (about 25 %–30 %) than the VTD and FTD approaches. Overall, the characteristics of SSI-1 drought are close to what is being identified by the VTM. The different outcome obtained with the drought identification methods illustrated with the historical analysis is also found in drought forecasting, as documented for the 2003 drought across Europe and for the Rhine River specifically. In the end, there is no unique hydrological drought definition (identification method) that fits all purposes, and hence developers of DEWS and end-users should clearly agree in the co-design phase upon a sharp definition of which type of streamflow drought is required to be forecasted for a specific application.

2021 ◽  
Author(s):  
Samuel J. Sutanto ◽  
Henny A. J. Van Lanen

<p>Streamflow drought forecasting is a key element of contemporary Drought Early Warning Systems (DEWS). The term streamflow drought forecasting, rather than streamflow forecasting, however, has created confusion within the scientific hydro-meteorological community, as well as in operational weather and water management services. Streamflow drought forecasting requires an additional step, which is the application of a drought identification method to the forecasted streamflow time series. The way, how streamflow drought is defined, is the main reason for this misperception. The purpose of this study, therefore, is to provide a comprehensive overview of the application of different drought identification approaches to forecast streamflow drought, incl. its characteristics, such as drought occurrence, timing, duration, and deficit volume, across the pan-European river network and for the Rhine River in more detail. In this study, the implications of different approaches for forecasting streamflow drought are elaborated using the extreme 2003 drought in Europe, as an example. The forecasted 25 ensemble streamflow data with 7-month lead time (LT) were obtained from the LISFLOOD hydrological model fed with seasonal meteorological forecasts from the European Centre for Medium-range Weather Forecasts system 5 (ECMWF SEAS 5). Streamflow droughts were analyzed using the daily and monthly Variable Threshold methods (VTD and VTM), daily and monthly Fixed Threshold methods (FTD and FTM), and the Standardized Streamflow Index with 1-month accumulation period (SSI-1). Our results clearly show that streamflow drought characteristics derived with different approaches deviate, which are partly associated with different climate regions across Europe. Using the forecasts initiated in July 2003 for LT=7-month, first, the daily drought approaches forecast more drought events than the monthly approaches. Second, the VT droughts (VTD and VTM), incl. SSI-1 forecast a lower number of drought occurrences than the FT droughts (FTD and FTM), which highlights the importance of taking seasonality into account. Overall, the FT approaches predict a longer drought duration, earlier drought timing, and higher drought deficit volume in many European rivers than the VT approaches. The characteristics of SSI-1 drought, in general, are close to what is being identified by the VTM approach. A detailed analysis of the drought forecasts for the Rhine River indicates that the number of drought events derived from the median of ensemble members can be predicted relatively well, but with lower skill for other drought characteristics. The use of monthly-aggregated forecasted flow data (e.g. VTM, FTM, and SSI) seems to be the best practice for seasonal drought forecasts because it will alleviate the drought forecast skill. The monthly drought threshold approaches, however, will forecast higher drought duration and deficit volume than using daily datasets. The choice of the drought identification method when forecasting streamflow drought, ultimately rests with the end-users and we need to realize that there is no one drought identification approach that fits all needs.</p>


2020 ◽  
Author(s):  
Samuel J. Sutanto ◽  
Henny A. J. Van Lanen

Abstract. Streamflow drought forecasting is a key element of contemporary Drought Early Warning Systems (DEWS). The term streamflow drought forecasting, rather than streamflow forecasting, however, has created confusion within the scientific hydro-meteorological community, as well as in operational weather and water management services. The way, how streamflow drought is defined, is the main reason for this misperception. The purpose of this study, therefore, is to provide a comprehensive overview of the differences within streamflow droughts using different identification approaches for European rivers, including an analysis of both historical drought and implications of forecasting of these extreme events. Streamflow data were obtained from a LISFLOOD hydrological model forced with gridded meteorological observed (known as LISFLOOD-Simulation Forced with Observed, SFO). The same model fed with seasonal meteorological forecasts of the European Centre for Medium-range Weather Forecasts system 5 (ECMWF SEAS 5) was used to obtain the forecasted streamflow. Streamflow droughts were analyzed using the Variable Threshold (VT), Fixed Threshold (FT), and the Standardized Streamflow Index (SSI). Our results clearly show that streamflow droughts derived from different approaches deviate from each other both in occurrence and timing, associated with different climate regions across Europe. The occurrence of FT drought is higher than droughts based upon VT and SSI, which highlights the importance of seasonality. FT drought happens earlier in the year than droughts obtained from VT and SSI. The use of aggregating daily streamflow data into monthly time windows for forecasting drought, such as the application of 30-day Moving Average (30DMA), is recommended to identify the VT and FT droughts. This approach will eliminate the undesired minor drought events, which are identified when using non-aggregated daily flow data. There is no unique hydrological drought definition that fits all purposes, hence developers of DEWS and end-users should clearly agree among themselves upon a sharp definition on which type of streamflow drought is required to be forecasted for a specific application.


2021 ◽  
Author(s):  
Henny A.J. Van Lanen ◽  
Samuel J. Sutanto

<p>Several approaches to identify hydrological drought exist, which result in differences in drought frequency, timing, duration, and deficit volume (drought characteristics) using the same hydrometeorological data as input. This has created confusion within the hydro-meteorological community, as well as in operational water management services on the difference in drought characteristics obtained with the different approaches. The aim of this study, therefore, is to provide a comprehensive overview of the differences of hydrological drought, i.e. streamflow drought, using different identification approaches for the pan-European river network (>10,000 river grid cells). Time series of daily streamflow data were obtained from the LISFLOOD hydrological model forced with gridded meteorological observations from 1990 to 2018. Streamflow droughts were detected using the daily and monthly Variable Threshold methods (VTD and VTM), daily and monthly Fixed Threshold methods (FTD and FTM), and the Standardized Streamflow Index with 1-month accumulation period (SSI-1). For the threshold methods the Q80 (flow that is equaled or exceeded 80 percent of the time) is applied, whereas for the SSI a threshold of about -1 is used. We applied a centered 30-day moving average (30DMA) smoothing technique to the daily flow data to reduce the number of minor droughts. This is the first study that compares all these drought identification approaches in such a systematic way at this large scale. Our results (pan-European maps, tables) clearly show that characteristics of streamflow droughts derived with different approaches deviate, partly associated with different climate regions across Europe. The daily threshold methods (VTD and FTD) identify twice as much drought events than the monthly threshold methods (VTM and FTM) due to the daily resolution and minor droughts, even with smoothing. Average duration of FT droughts is longer than VT droughts. In addition, FT droughts have higher drought deficit volumes than VT droughts (~ 30-60%, dependent on climate region), whereas using monthly data (VTM and FTM) result in higher deficits (~10-60%) than daily data (VTD and FTD). In northern and central European regions (Köppen- Geiger Dfb, Dfc and ET climates), the variable threshold methods (VTD and VTM) generally detect drought earlier (March-July) than the fixed thresholds (FTD and FTM) (July-October). In the western European regions and the Mediterranean differences in timing among identification approaches are not so clear. The characteristics of SSI-1 drought, in general, are close to what is being identified with the VTM approach. Differences in drought characteristics highlight the importance of whether end-users should take seasonality into account or not (VT and SSI-1 versus FT) and consider temporal variability (daily versus monthly). Certainly, there is no unique hydrological drought definition that fits all purposes; hence we suggest that users should clearly agree among themselves upon a sharp definition on which type of streamflow drought is required to be identified for a specific application.</p>


Forecasting ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 59-84 ◽  
Author(s):  
Alen Shrestha ◽  
Md Mafuzur Rahaman ◽  
Ajay Kalra ◽  
Rohit Jogineedi ◽  
Pankaj Maheshwari

This study forecasts and assesses drought situations in various regions of India (the Araveli region, the Bundelkhand region, and the Kansabati river basin) based on seven simulated climates in the near future (2015–2044). The self-calibrating Palmer Drought Severity Index (scPDSI) was used based on its fairness in identifying drought conditions that account for the temperature as well. Gridded temperature and rainfall data of spatial resolution of 1 km were used to bias correct the multi-model ensemble mean of the Global Climatic Models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) project. Equidistant quantile-based mapping was adopted to remove the bias in the rainfall and temperature data, which were corrected on a monthly scale. The outcome of the forecast suggests multiple severe-to-extreme drought events of appreciable durations, mostly after the 2030s, under most climate scenarios in all the three study areas. The severe-to-extreme drought duration was found to last at least 20 to 30 months in the near future in all three study areas. A high-resolution drought index was developed and proven to be a key to assessing the drought situation.


2018 ◽  
Author(s):  
Bart van Osnabrugge ◽  
Remko Uijlenhoet ◽  
Albrecht Weerts

Abstract. Medium term hydrologic forecast uncertainty is strongly dependent on the forecast quality of meteorological variables. Of these variables, the influence of precipitation has been studied most widely, while temperature, radiative forcing and their derived product potential evapotranspiration (PET) have received little attention from the perspective of hydrological forecasting. This study aims to fill this gap by assessing the usability of potential evaporation forecasts for 10-day-ahead streamflow forecasting in the Rhine basin, Europe. In addition, the forecasts of the meteorological variables are compared with observations. Streamflow reforecasts were performed with the daily wflow_hbv model used in previous studies of the Rhine using the ECMWF 20-year meteorological reforecast dataset. Meteorological forecasts were compared with observed rainfall, temperature, global radiation and potential evaporation for 148 subbasins. Secondly, the effect of using PET climatology versus using observation-based estimates of PET was assessed for hydrological state and for streamflow forecast skill. We find that: (1) there is considerable skill in the ECMWF reforecasts to predict PET for all seasons, (2) using dynamical PET forcing based on observed temperature and satellite global radiation estimates results in lower evaporation and wetter initial states, but (3) the effect on forecasted 10-day streamflow is limited. Implications of this finding are that it is reasonable to use meteorological forecasts to forecast potential evaporation and use this is in medium-range streamflow forecasts. However, it can be concluded that an approach using PET climatology is also sufficient, most probably not only for the application shown here, but for most models similar to the HBV concept and for moderate climate zones. As a by-product, this research resulted in gridded datasets for temperature, radiation and potential evaporation based on the Makkink equation for the Rhine basin. The datasets have a spatial resolution of 1.2 × 1.2 km and an hourly timestep for the period from July 1996 through 2015. This dataset complements an earlier precipitation dataset for the same area, period and resolution.


2017 ◽  
Author(s):  
Louise Arnal ◽  
Hannah L. Cloke ◽  
Elisabeth Stephens ◽  
Fredrik Wetterhall ◽  
Christel Prudhomme ◽  
...  

Abstract. This paper presents a Europe-wide analysis of the skill of the newly operational EFAS (European Flood Awareness System) seasonal streamflow forecasts, benchmarked against the Ensemble Streamflow Prediction (ESP) forecasting approach. The results suggest that, on average, the System 4 seasonal climate forecasts improve the streamflow predictability over historical meteorological observations for the first month of lead time only. However, the predictability varies in space and time and is greater in winter and autumn. Parts of Europe additionally exhibit a longer predictability, up to seven months of lead time, for certain months within a season. The results also highlight the potential usefulness of the EFAS seasonal streamflow forecasts for decision-making. Although the ESP is the most potentially useful forecasting approach in Europe, the EFAS seasonal streamflow forecasts appear more potentially useful than the ESP in some regions and for certain seasons, especially in winter for most of Europe. Patterns in the EFAS seasonal streamflow hindcasts skill are however not mirrored in the System 4 seasonal climate hindcasts, hinting the need for a better understanding of the link between hydrological and meteorological variables on seasonal timescales, with the aim to improve climate-model based seasonal streamflow forecasting.


2020 ◽  
Vol 101 (4) ◽  
pp. E368-E393 ◽  
Author(s):  
Samuel Jonson Sutanto ◽  
Henny A. J. Van Lanen ◽  
Fredrik Wetterhall ◽  
Xavier Llort

Abstract Drought early warning systems (DEWS) have been developed in several countries in response to high socioeconomic losses caused by droughts. In Europe, the European Drought Observatory (EDO) monitors the ongoing drought and forecasts soil moisture anomalies up to 7 days ahead and meteorological drought up to 3 months ahead. However, end users managing water resources often require hydrological drought warning several months in advance. To answer this challenge, a seasonal pan-European DEWS has been developed and has been running in a preoperational mode since mid-2018 under the EU-funded Enhancing Emergency Management and Response to Extreme Weather and Climate Events (ANYWHERE) project. The ANYWHERE DEWS (AD-EWS) is different than other operational DEWS in the sense that the AD-EWS provides a wide range of seasonal hydrometeorological drought forecasting products in addition to meteorological drought, that is, a broad suite of drought indices that covers all water cycle components (drought in precipitation, soil moisture, runoff, discharge, and groundwater). The ability of the AD-EWS to provide seasonal drought predictions in high spatial resolution (5 km × 5 km) and its diverse products mark the AD-EWS as a preoperational drought forecasting system that can serve a broad range of different users’ needs in Europe. This paper introduces the AD-EWS and shows some examples of different drought forecasting products, the drought forecast score, and some examples of a user-driven assessment of forecast trust levels.


2012 ◽  
Vol 16 (8) ◽  
pp. 2437-2451 ◽  
Author(s):  
M. H. J. van Huijgevoort ◽  
P. Hazenberg ◽  
H. A. J. van Lanen ◽  
R. Uijlenhoet

Abstract. The identification of hydrological drought at global scale has received considerable attention during the last decade. However, climate-induced variation in runoff across the world makes such analyses rather complicated. This especially holds for the drier regions of the world (both cold and warm), where, for a considerable period of time, zero runoff can be observed. In the current paper, we present a method that enables to identify drought at global scale across climate regimes in a consistent manner. The method combines the characteristics of the classical variable threshold level method that is best applicable in regions with non-zero runoff most of the time, and the consecutive dry days (period) method that is better suited for areas where zero runoff occurs. The newly presented method allows a drought in periods with runoff to continue in the following period without runoff. The method is demonstrated by identifying droughts from discharge observations of four rivers situated within different climate regimes, as well as from simulated runoff data at global scale obtained from an ensemble of five different land surface models. The identified drought events obtained by the new approach are compared to those resulting from application of the variable threshold level method or the consecutive dry period method separately. Results show that, in general, for drier regions, the threshold level method overestimates drought duration, because zero runoff periods are included in a drought, according to the definition used within this method. The consecutive dry period method underestimates drought occurrence, since it cannot identify droughts for periods with runoff. The developed method especially shows its relevance in transitional areas, because, in wetter regions, results are identical to the classical threshold level method. By combining both methods, the new method is able to identify single drought events that occur during positive and zero runoff periods, leading to a more realistic global drought characterization, especially within drier environments.


Water SA ◽  
2019 ◽  
Vol 45 (1 January) ◽  
Author(s):  
L Nhamo ◽  
T Mabhaudhi ◽  
AT Modi

Southern Africa is highly vulnerable to drought because of its dependence on climate-sensitive sectors of agriculture, hydroenergy and fisheries. Recurring droughts continue to impact rural livelihoods and degrade the environment. Drought severity in southern Africa is exacerbated by poor levels of preparedness and low adaptive capacity. Whilst weather extremes and hazards are inevitable, the preparedness to manage such hazards determines their impact and whether they become disasters. Southern Africa is often caught unprepared by drought as existing early warning systems lack the drought forecastingcomponent, which often results in reactionary interventions as opposed to well-planned and proactive response mechanisms. This study assesses the spatio-temporal changes of rainfall and aridity in southern Africa through an analysis of long-term precipitation and evaporation trends from 1960 to 2007. Stakeholder consultation was conducted in Madagascar, Malawi, Zambia and Zimbabwe during the peak of the 2015/16 drought, focusing on overall drought impacts, current water resource availability, existing early warning systems, adaptation mechanisms and institutional capacity to mitigate and managedroughts as part of overall disaster risk reduction strategies. Average rainfall has decreased by 26% in the region between 1960 and 2007, and aridity has increased by 11% between 1980 and 2007. The absence of drought forecasting and lack of institutional capacity to mitigate drought impede regional drought risk reduction initiatives. Existing multi-hazard early warning systems in the region focus on flooding and drought monitoring and assessment. Drought forecasting is often not given due consideration, yet it is a key component of early warning and resilience building. We propose a regional drought early warning framework, emphasising the importance of both monitoring and forecasting as being integral to a drought early warning system and building resilience to drought.


2017 ◽  
Vol 49 (1) ◽  
pp. 134-149 ◽  
Author(s):  
Juan Antonio Rivera ◽  
Diego C. Araneo ◽  
Olga C. Penalba ◽  
Ricardo Villalba

Abstract Under the current global warming trend, droughts are expected to increase, with serious implications for water resources management. This study analyzed the regional aspects of droughts in terms of streamflow deficiencies over the Andean rivers of Patagonia, Argentina. Based on the variable threshold level method, the main characteristics of streamflow droughts were obtained for the hydrological years 1962/63–2014/15, considering three different severity levels over 11 representative basins. Two distinct regional behaviors were identified in terms of temporal variations of streamflow drought duration and its cumulative deficit volume, dividing the study area into North and Central Patagonia. The effects of the Southern Annular Mode (SAM), the El Niño–Southern Oscillation (ENSO), and the Pacific Decadal Oscillation (PDO) on the interannual and interdecadal variability of streamflow droughts were assessed through an empirical decomposition applied to the regional time series. These large-scale climatic oscillations have a distinct regional and temporal behavior in terms of the modulation of streamflow drought variability. Considering the interannual streamflow drought variability, the El Niño signal is more consistent and contributes with humid conditions, especially over North Patagonia. The multi-decadal component of the streamflow drought time series is linked to the upward trend in SAM, particularly over Central Patagonia.


Sign in / Sign up

Export Citation Format

Share Document