scholarly journals Observed and simulated hydroclimatology using distributed hydrologic model from in-situ and multi-satellite remote sensing datasets in Lake Victoria region in East Africa

2010 ◽  
Vol 7 (4) ◽  
pp. 4785-4816 ◽  
Author(s):  
S. I. Khan ◽  
P. Adhikari ◽  
Y. Hong ◽  
H. Vergara ◽  
T. Grout ◽  
...  

Abstract. Floods and droughts are common, recurring natural hazards in East African nations. Studies of hydro-climatology at daily, seasonal, and annual time scale is an important in understanding and ultimately minimizing the impacts of such hazards. Using daily in-situ data over the last two decades combined with the recently available multiple-years satellite remote sensing data, we analyzed and simulated, with a distributed hydrologic model, the hydro-climatology in Nzoia, one of the major contributing sub-basins of Lake Victoria in the East African highlands. The basin, with a semi arid climate, has no sustained base flow contribution to Lake Victoria. The short spell of high discharge showed that rain is the prime cause of floods in the basin. There is only a marginal increase in annual mean discharge over the last 21 years. The 2-, 5- and 10-year peak discharges, for the entire study period showed that more years since the mid 1990's have had high peak discharges despite having relatively less annual rain. The study also presents the hydrologic model calibration and validation results over the Nzoia Basin. The spatiotemporal variability of the water cycle components were quantified using a physically-based, distributed hydrologic model, with in-situ and multi-satellite remote sensing datasets. Moreover, the hydrologic capability of remote sensing data such as TRMM-3B42V6 was tested in terms of reconstruction of the water cycle components. The spatial distribution and time series of modeling results for precipitation (P), evapotranspiration (ET), and change in storage (dS/dt) showed considerable agreement with the monthly model runoff estimates and gauge observations. Runoff values responded to precipitation events that occurred across the catchment during the wet season from March to early June. The hydrologic model captured the spatial variability of the soil moisture storage. The spatially distributed model inputs, states, and outputs, were found to be useful for understanding the hydrologic behavior at the catchment scale. Relatively high flows were experienced near the basin outlet from previous rainfall, with a new flood peak responding to the rainfall in the upper part of the basin. The monthly peak runoff was observed in the months of April, May and November. The analysis revealed a linear relationship between rainfall and runoff for both wet and dry seasons. The model was found to be useful in poorly gauged catchments using satellite forcing data and showed the potential to be used not only for the investigation of the catchment scale water balance but also for addressing issues pertaining to sustainability of the resources within the catchment.

2011 ◽  
Vol 15 (1) ◽  
pp. 107-117 ◽  
Author(s):  
S. I. Khan ◽  
P. Adhikari ◽  
Y. Hong ◽  
H. Vergara ◽  
R. F Adler ◽  
...  

Abstract. Study of hydro-climatology at a range of temporal scales is important in understanding and ultimately mitigating the potential severe impacts of hydrological extreme events such as floods and droughts. Using daily in-situ data over the last two decades combined with the recently available multiple-years satellite remote sensing data, we analyzed and simulated, with a distributed hydrologic model, the hydro-climatology in Nzoia, one of the major contributing sub-basins of Lake Victoria in the East African highlands. The basin, with a semi arid climate, has no sustained base flow contribution to Lake Victoria. The short spell of high discharge showed that rain is the prime cause of floods in the basin. There is only a marginal increase in annual mean discharge over the last 21 years. The 2-, 5- and 10- year peak discharges, for the entire study period showed that more years since the mid 1990's have had high peak discharges despite having relatively less annual rain. The study also presents the hydrologic model calibration and validation results over the Nzoia basin. The spatiotemporal variability of the water cycle components were quantified using a hydrologic model, with in-situ and multi-satellite remote sensing datasets. The model is calibrated using daily observed discharge data for the period between 1985 and 1999, for which model performance is estimated with a Nash Sutcliffe Efficiency (NSCE) of 0.87 and 0.23% bias. The model validation showed an error metrics with NSCE of 0.65 and 1.04% bias. Moreover, the hydrologic capability of satellite precipitation (TRMM-3B42 V6) is evaluated. In terms of reconstruction of the water cycle components the spatial distribution and time series of modeling results for precipitation and runoff showed considerable agreement with the monthly model runoff estimates and gauge observations. Runoff values responded to precipitation events that occurred across the catchment during the wet season from March to early June. The spatially distributed model inputs, states, and outputs, were found to be useful for understanding the hydrologic behavior at the catchment scale. The monthly peak runoff is observed in the months of April, May and November. The analysis revealed a linear relationship between rainfall and runoff for both wet and dry seasons. Satellite precipitation forcing data showed the potential to be used not only for the investigation of water balance but also for addressing issues pertaining to sustainability of the resources at the catchment scale.


2020 ◽  
Vol 13 (3) ◽  
pp. 1267-1284 ◽  
Author(s):  
Theo Baracchini ◽  
Philip Y. Chu ◽  
Jonas Šukys ◽  
Gian Lieberherr ◽  
Stefan Wunderle ◽  
...  

Abstract. The understanding of physical dynamics is crucial to provide scientifically credible information on lake ecosystem management. We show how the combination of in situ observations, remote sensing data, and three-dimensional hydrodynamic (3D) numerical simulations is capable of resolving various spatiotemporal scales involved in lake dynamics. This combination is achieved through data assimilation (DA) and uncertainty quantification. In this study, we develop a flexible framework by incorporating DA into 3D hydrodynamic lake models. Using an ensemble Kalman filter, our approach accounts for model and observational uncertainties. We demonstrate the framework by assimilating in situ and satellite remote sensing temperature data into a 3D hydrodynamic model of Lake Geneva. Results show that DA effectively improves model performance over a broad range of spatiotemporal scales and physical processes. Overall, temperature errors have been reduced by 54 %. With a localization scheme, an ensemble size of 20 members is found to be sufficient to derive covariance matrices leading to satisfactory results. The entire framework has been developed with the goal of near-real-time operational systems (e.g., integration into meteolakes.ch).


2017 ◽  
Vol 18 (3) ◽  
pp. 863-877 ◽  
Author(s):  
Joshua K. Roundy ◽  
Joseph A. Santanello

Abstract Feedbacks between the land and the atmosphere can play an important role in the water cycle, and a number of studies have quantified land–atmosphere (LA) interactions and feedbacks through observations and prediction models. Because of the complex nature of LA interactions, the observed variables are not always available at the needed temporal and spatial scales. This work derives the Coupling Drought Index (CDI) solely from satellite data and evaluates the input variables and the resultant CDI against in situ data and reanalysis products. NASA’s Aqua satellite and retrievals of soil moisture and lower-tropospheric temperature and humidity properties are used as input. Overall, the Aqua-based CDI and its inputs perform well at a point, spatially, and in time (trends) compared to in situ and reanalysis products. In addition, this work represents the first time that in situ observations were utilized for the coupling classification and CDI. The combination of in situ and satellite remote sensing CDI is unique and provides an observational tool for evaluating models at local and large scales. Overall, results indicate that there is sufficient information in the signal from simultaneous measurements of the land and atmosphere from satellite remote sensing to provide useful information for applications of drought monitoring and coupling metrics.


2017 ◽  
Vol 17 (16) ◽  
pp. 9761-9780 ◽  
Author(s):  
Nick Schutgens ◽  
Svetlana Tsyro ◽  
Edward Gryspeerdt ◽  
Daisuke Goto ◽  
Natalie Weigum ◽  
...  

Abstract. The discontinuous spatio-temporal sampling of observations has an impact when using them to construct climatologies or evaluate models. Here we provide estimates of this so-called representation error for a range of timescales and length scales (semi-annually down to sub-daily, 300 to 50 km) and show that even after substantial averaging of data significant representation errors may remain, larger than typical measurement errors. Our study considers a variety of observations: ground-site or in situ remote sensing (PM2. 5, black carbon mass or number concentrations), satellite remote sensing with imagers or lidar (extinction). We show that observational coverage (a measure of how dense the spatio-temporal sampling of the observations is) is not an effective metric to limit representation errors. Different strategies to construct monthly gridded satellite L3 data are assessed and temporal averaging of spatially aggregated observations (super-observations) is found to be the best, although it still allows for significant representation errors. However, temporal collocation of data (possible when observations are compared to model data or other observations), combined with temporal averaging, can be very effective at reducing representation errors. We also show that ground-based and wide-swath imager satellite remote sensing data give rise to similar representation errors, although their observational sampling is different. Finally, emission sources and orography can lead to representation errors that are very hard to reduce, even with substantial temporal averaging.


2019 ◽  
Author(s):  
Theo Baracchini ◽  
Philip Yifei Chu ◽  
Jonas Šukys ◽  
Gian Lieberherr ◽  
Stefan Wunderle ◽  
...  

Abstract. The understanding of lakes physical dynamics is crucial to provide scientifically credible information for ecosystem management. We show how the combination of in-situ data, remote sensing observations and three-dimensional hydrodynamic numerical simulations is capable of delivering various spatio-temporal scales involved in lakes dynamics. This combination is achieved through data assimilation (DA) and uncertainty quantification. In this study, we present a flexible framework for DA into lakes three-dimensional hydrodynamic models. Using an Ensemble Kalman Filter, our approach accounts for model and observational uncertainties. We demonstrate the framework by assimilating in-situ and satellite remote sensing temperature data into a three-dimensional hydrodynamic model of Lake Geneva. Results show that DA effectively improves model performance over a broad range of spatio-temporal scales and physical processes. Overall, temperature errors have been reduced by 54 %. With a localization scheme, an ensemble size of 20 members is found to be sufficient to derive covariance matrices leading to satisfactory results. The entire framework has been developed for the constraints of operational systems and near real-time operations (e.g. integration into http://meteolakes.ch).


2017 ◽  
Author(s):  
Nick Schutgens ◽  
Svetlana Tsyro ◽  
Ed Gryspeerdt ◽  
Daisuke Goto ◽  
Natalie Weigum ◽  
...  

Abstract. The discontinuous spatio-temporal sampling of observations has an impact when using them to construct climatologies or evaluate models. Here we provide estimates of this so-called representation error for a range of time and length-scales (semi-annually down to sub-daily, 300 to 50 km) and show that even after substantial averaging of data significant representation errors may remain, larger than typical measurement errors. Our study considers a variety of observations: ground-site remote sensing or in-situ (PM2.5, black carbon mass or number concentrations), satellite remote sensing with imagers or LIDARs (extinction). We show that observational coverage (a measure of how dense the spatio-temporal sampling of the observations is) is not an effective metric to limit representation errors. Different strategies to construct monthly satellite L3 data are assessed and temporal averaging of spatially aggregated observations (super-observations) is found to be the best, although it still allows for significant representation errors. Temporal collocation of data (only possible in the context of evaluating model data with observations) can be very effective at reducing representation errors even when spatial sampling issues remain (e.g. when using ground-sites). We also show that ground-based and wide-swath imager satellite remote sensing data give rise to similar representation errors although their observational sampling is different. Finally, emission sources and orography can lead to representation errors that are very hard to reduce even with substantial temporal averaging.


Author(s):  
H. Lilienthal ◽  
A. Brauer ◽  
K. Betteridge ◽  
E. Schnug

Conversion of native vegetation into farmed grassland in the Lake Taupo catchment commenced in the late 1950s. The lake's iconic value is being threatened by the slow decline in lake water quality that has become apparent since the 1970s. Keywords: satellite remote sensing, nitrate leaching, land use change, livestock farming, land management


1996 ◽  
pp. 51-54 ◽  
Author(s):  
N. V. M. Unni

The recognition of versatile importance of vegetation for the human life resulted in the emergence of vegetation science and many its applications in the modern world. Hence a vegetation map should be versatile enough to provide the basis for these applications. Thus, a vegetation map should contain not only information on vegetation types and their derivatives but also the geospheric and climatic background. While the geospheric information could be obtained, mapped and generalized directly using satellite remote sensing, a computerized Geographic Information System can integrate it with meaningful vegetation information classes for large areas. Such aft approach was developed with respect to mapping forest vegetation in India at. 1 : 100 000 (1983) and is in progress now (forest cover mapping at 1 : 250 000). Several review works reporting the experimental and operational use of satellite remote sensing data in India were published in the last years (Unni, 1991, 1992, 1994).


Sign in / Sign up

Export Citation Format

Share Document