scholarly journals Estimation of overland flow metrics at semiarid condition: Patagonian Monte

2012 ◽  
Vol 9 (5) ◽  
pp. 5837-5869
Author(s):  
M. J. Rossi ◽  
J. O. Ares

Abstract. Water infiltration and overland flow (WIOF) processes are relevant in considering water partition among plant life forms, the sustainability of vegetation and the design of sustainable hydrological management. WIOF processes in arid and semiarid regions present regional characteristic trends imposed by the prevailing physical conditions of the upper soil as evolved under water-limited climate. A set of plot-scale field experiments at the semi-arid Patagonian Monte (Argentina) was performed in order to estimate infiltration-overland descriptive flow parameters. The micro-relief of undisturbed field plots at z-scale <1 mm was characterized through close-range stereo-photogrammetry and geo-statistical modelling. The overland flow areas produced by experimental runoff events were video-recorded and the runoff speed was measured with ortho-image processing software. Antecedent and post-inflow moisture were measured, and texture, bulk density and physical properties of the soil at the upper vadose zone were estimated. Field data were used to calibrate a physically-based, time explicit model of water balance in the upper soil and overland flows with a modified Green-Ampt (infiltration) and Chezy's (overland flow) algorithms. Modelling results satisfy validation criteria based on the observed overland flow areas, runoff-speed, water mass balance of the upper vadose zone, infiltration depth, slope along runoff-plume direction, and depression storage intensity. The experimental procedure presented supplies plot-scale estimates of overland flow and infiltration intensities at various intensities of water input which can be incorporated in larger-scale hydrological grid-models of arid regions. Findings were: (1) Overland flow velocities as well as infiltration-overland flow mass balances are consistently modelled by considering variable infiltration rates corresponding to depression storage and/or non-ponded areas. (2) The statistical relations presented allow the estimation of theoretical hydrodynamic parameters (Chezy's frictional C, average overland flow depth d*) through measurable characteristics of the surface soil and overland flow kinetics. (3) A protocol of field experiments and coupled time-distributed modelling to 1–2 above is described. The methodology and results obtained in this study are probably relevant to similar arid-semiarid areas of the world.

2012 ◽  
Vol 16 (9) ◽  
pp. 3293-3307 ◽  
Author(s):  
M. J. Rossi ◽  
J. O. Ares

Abstract. Water infiltration and overland flow are relevant in considering water partition among plant life forms, the sustainability of vegetation and the design of sustainable hydrological models and management. In arid and semi-arid regions, these processes present characteristic trends imposed by the prevailing physical conditions of the upper soil as evolved under water-limited climate. A set of plot-scale field experiments at the semi-arid Patagonian Monte (Argentina) were performed in order to estimate the effect of depression storage areas and infiltration rates on depths, velocities and friction of overland flows. The micro-relief of undisturbed field plots was characterized at z-scale 1 mm through close-range stereo-photogrammetry and geo-statistical tools. The overland flow areas produced by controlled water inflows were video-recorded and the flow velocities were measured with image processing software. Antecedent and post-inflow moisture were measured, and texture, bulk density and physical properties of the upper soil were estimated based on soil core analyses. Field data were used to calibrate a physically-based, mass balanced, time explicit model of infiltration and overland flows. Modelling results reproduced the time series of observed flow areas, velocities and infiltration depths. Estimates of hydrodynamic parameters of overland flow (Reynolds-Froude numbers) are informed. To our knowledge, the study here presented is novel in combining several aspects that previous studies do not address simultaneously: (1) overland flow and infiltration parameters were obtained in undisturbed field conditions; (2) field measurements of overland flow movement were coupled to a detailed analysis of soil microtopography at 1 mm depth scale; (3) the effect of depression storage areas in infiltration rates and depth-velocity friction of overland flows is addressed. Relevance of the results to other similar desert areas is justified by the accompanying biogeography analysis of similarity of the environment where this study was performed with other desert areas of the world.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 968 ◽  
Author(s):  
Ammar A. Albalasmeh ◽  
Mamoun A. Gharaibeh ◽  
Ma’in Z. Alghzawi ◽  
Renato Morbidelli ◽  
Carla Saltalippi ◽  
...  

Soil water infiltration is a critical process in the soil water cycle and agricultural practices, especially when wastewater is used for irrigation. Although research has been conducted to evaluate the changes in the physical and chemical characteristics of soils irrigated by treated wastewater, a quantitative analysis of the effects produced on the infiltration process is still lacking. The objective of this study is to address this issue. Field experiments previously conducted on three adjacent field plots characterized by the same clayey soil but subjected to three different irrigation treatments have been used. The three irrigation conditions were: non-irrigated (natural conditions) plot, irrigated plot with treated wastewater for two years, and irrigated plot with treated wastewater for five years. Infiltration measurements performed by the Hood infiltrometer have been used to estimate soil hydraulic properties useful to calibrate a simplified infiltration model widely used under ponding conditions, that were existing during the irrigation stage. Our simulations highlight the relevant effect of wastewater usage as an irrigation source in reducing cumulative infiltration and increasing overland flow as a result of modified hydraulic properties of soils characterized by a lower capacity of water drainage. These outcomes can provide important insights for the optimization of irrigation techniques in arid areas where the use of wastewater is often required due to the chronic shortage of freshwater.


2013 ◽  
Vol 10 (2) ◽  
pp. 1769-1817
Author(s):  
E. Vannametee ◽  
D. Karssenberg ◽  
M. R. Hendriks ◽  
M. F. P. Bierkens

Abstract. This paper presents an evaluation of the closure relation for Hortonian runoff that explicitly accounts for sub-REW process heterogeneity and scale effects, proposed in Vannametee et al. (2012). We apply the closure relation, which is embedded in an event-based rainfall-runoff model developed under the REW framework, to a 15 km2 catchment in the French Alps. The scaling parameters in the closure relation are directly estimated using local and thus observable REW properties and rainstorm characteristics. Evaluation of the simulation results against the observed discharge indicates good performance in reproducing the hydrograph and discharge volume, even without calibration. The discharge prediction exhibits a significant improvement when the closure relation is calibrated with catchment-scale runoff. Our closure relation also yields better predictions when compared with results from a benchmark closure relation that does not consider scale effects. Calibration is done by only changing one of the REW observables, i.e. hydraulic conductivity, as that determines the scaling parameters, using a single prefactor for the entire catchment. This enables the calibration of the (semi)distributed modelling framework in this study to use only a single parameter. The results without calibration suggest that, in the absence of discharge observations, reasonable estimates of catchment-scale runoff responses are possibly based on observations at the sub-REW (i.e. plot) scale. Thus, our study provides a platform for the future development of low-dimensional and robust semi-distributed, physically-based discharge models in ungauged catchments.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2032
Author(s):  
Pâmela A. Melo ◽  
Lívia A. Alvarenga ◽  
Javier Tomasella ◽  
Carlos R. Mello ◽  
Minella A. Martins ◽  
...  

Landform classification is important for representing soil physical properties varying continuously across the landscape and for understanding many hydrological processes in watersheds. Considering it, this study aims to use a geomorphology map (Geomorphons) as an input to a physically based hydrological model (Distributed Hydrology Soil Vegetation Model (DHSVM)) in a mountainous headwater watershed. A sensitivity analysis of five soil parameters was evaluated for streamflow simulation in each Geomorphons feature. As infiltration and saturation excess overland flow are important mechanisms for streamflow generation in complex terrain watersheds, the model’s input soil parameters were most sensitive in the “slope”, “hollow”, and “valley” features. Thus, the simulated streamflow was compared with observed data for calibration and validation. The model performance was satisfactory and equivalent to previous simulations in the same watershed using pedological survey and moisture zone maps. Therefore, the results from this study indicate that a geomorphologically based map is applicable and representative for spatially distributing hydrological parameters in the DHSVM.


Author(s):  
Maria Papadopoulou ◽  
Ioannis Tsiripidis ◽  
Sampson Panajiotidis ◽  
Georgios Fotiadis ◽  
Daniel Veres ◽  
...  

AbstractDue to the complex relationship between pollen and vegetation, it is not yet clear how pollen diagrams may be interpreted with respect to changes in floristic diversity and only a few studies have hitherto investigated this problem. We compare pollen assemblages from moss samples in two southeastern European forests with the surrounding vegetation to investigate (a) their compositional similarity, (b) the association between their diversity characteristics in both terms of richness and evenness, and (c) the correspondence of the main ecological gradients that can be revealed by them. Two biogeographical regions with different vegetation characteristics, the Pieria mountains (north central Greece) and the slopes of Ciomadul volcano (eastern Romania), were chosen as divergent examples of floristic regions, vegetation structure and landscape openness. Pollen assemblages are efficient in capturing the presence or absence, rather than the abundance in distribution of plants in the surrounding area and this bias increases along with landscape openness and vegetation diversity, which is higher in the Pieria mountains. Pollen assemblages and vegetation correlate better in terms of richness, that is, low order diversity indices. Relatively high correlation, in terms of evenness, could be potentially found in homogenous and species poor ecosystems as for Ciomadul. Composition and diversity of woody, rather than herb, vegetation is better reflected in pollen assemblages of both areas, especially for Pieria where a direct comparison of the two components was feasible, although this depends on the species-specific pollen production and dispersal, the openness of landscape and the overall diversity of vegetation. Gradients revealed by pollen assemblages are highly and significantly correlated with those existing in vegetation. Pollen assemblages may represent the vegetation well in terms of composition, diversity (mainly richness) and ecological gradients, but this potential depends on land use, vegetation structure, biogeographical factors and plant life forms.


2000 ◽  
Vol 11 (1) ◽  
pp. 39-42 ◽  
Author(s):  
Numa P. Pavón ◽  
Humberto Hernández-Trejo ◽  
Víctor Rico-Gray

Biologia ◽  
2010 ◽  
Vol 65 (1) ◽  
Author(s):  
Zvjezdana Stančić

AbstractMarshland vegetation of the class Phragmito-Magnocaricetea in the Krapina river valley was investigated during 2006 and 2007, and some sporadic investigations were made earlier. Phytosociological studies were carried out in accordance with the standard Braun-Blanquet methodology. As a result of the field work, and a small amount of data from the literature, 120 relevés were collected and 18 communities were established. For the purposes of comparison, the relevés were also classified using numerical methods. The clusters obtained mostly correspond to specific associations, but do not confirm the division into traditional vegetation alliances and orders. In the analysis of the ecological factors it is established that separation of the relevés is influenced by nutrient content, soil reaction, soil moisture, depth of water, and type of management. Analysis of the plant life forms shows, in all marshland communities, a prevalence of hemicryptophytes, geophytes and hydrophytes. The most widespread marshland communities of the investigated area are: Phalaridetum arundinaceae, Phragmitetum australis and Galio palustris-Caricetum ripariae. Furthermore, Carex randalpina community is recorded for the first time in Croatia. The most threatened marshland communities could be considered to be: Carex randalpina community, Caricetum vesicariae, Leersietum oryzoidis and Oenantho-Rorippetum. They are selected because of their very small surfaces in the investigated area and the small number of known localities within the territory of Croatia. The most invasive alien plant species in the Krapina river valley is Solidago gigantea. It spreads in potential habitats of marshland vegetation, and it is recorded in the species composition of many marshland communities. For the preservation of marshland vegetation, and especially threatened types, it is necessary to maintain the water regime of the habitats, to not remove natural plant cover due to spreading of neophytes, and to provide occasional mowing and burning.


2021 ◽  
Vol 118 (41) ◽  
pp. e2101676118
Author(s):  
Tyler C. Coverdale ◽  
Ryan D. O’Connell ◽  
Matthew C. Hutchinson ◽  
Amanda Savagian ◽  
Tyler R. Kartzinel ◽  
...  

African savannas are the last stronghold of diverse large-mammal communities, and a major focus of savanna ecology is to understand how these animals affect the relative abundance of trees and grasses. However, savannas support diverse plant life-forms, and human-induced changes in large-herbivore assemblages—declining wildlife populations and their displacement by livestock—may cause unexpected shifts in plant community composition. We investigated how herbivory affects the prevalence of lianas (woody vines) and their impact on trees in an East African savanna. Although scarce (<2% of tree canopy area) and defended by toxic latex, the dominant liana, Cynanchum viminale (Apocynaceae), was eaten by 15 wild large-herbivore species and was consumed in bulk by native browsers during experimental cafeteria trials. In contrast, domesticated ungulates rarely ate lianas. When we experimentally excluded all large herbivores for periods of 8 to 17 y (simulating extirpation), liana abundance increased dramatically, with up to 75% of trees infested. Piecewise exclusion of different-sized herbivores revealed functional complementarity among size classes in suppressing lianas. Liana infestation reduced tree growth and reproduction, but herbivores quickly cleared lianas from trees after the removal of 18-y-old exclosure fences (simulating rewilding). A simple model of liana contagion showed that, without herbivores, the long-term equilibrium could be either endemic (liana–tree coexistence) or an all-liana alternative stable state. We conclude that ongoing declines of wild large-herbivore populations will disrupt the structure and functioning of many African savannas in ways that have received little attention and that may not be mitigated by replacing wildlife with livestock.


Author(s):  
Pavlova N.R. ◽  
Dzerkal V.M. ◽  
Ponomareva А.А.

In order to preserve, reproduce and effectively use the natural complexes and objects of the DniproDelta as one of the most valuable natural floodplain-littoral complexes in Europe, which have special environmental, recreational, historical and cultural, scientific, educational and aesthetic value, and ensurethe conservationof «DniproDelta»wetland of theinternational importance,the National Natural Park «Lower Dnipro»was created(Decree of the President of Ukraine of November 24, 2015 No 657/2015).The flora of the higher vascular plants of the Park contains 820 species, 40 species of which (4.9% of the total number) are woody plants. Rosaceae Juss. (14 species), Salicaceae Mirb. (7 species), Aceraceae Juss. (3 types) are leading families of the dendroflora of the Park.Biomorphological characteristics of tree plant species in the flora of the Lower Dnipro National Nature Park were carried out according to the following classifications: 1) K. Raunkiersystem of plant life forms; 2) ecological and morphological classification of life forms of I. G. Serebryakov; 3) architectural models of F. Alle, R. Oldeman and P. Tomlinson; 4) classification of the life forms of plants of the temperate zone, which takes into account the vegetative propagation by O. V. Smirnova, L. B. Zaugolnova.AnalysisoftypesofbiomorphsaccordingtotheclassificationofK. Raunkiershowedthatthevastmajorityofdendrofloraspeciesbelongtophanerophytes, amongthem, dependingontheheightoftheplant, therearedifferentgroups-megaphanerophytes(e.g., Populustremula), mesophanerophytes(Salixalba), microphaneorphytes, nanophanerophytes(Amygdalusnana) andhamephytes(Ephedradistachia).According to the ecological and morphological classification of I. G. Serebryakov life forms, the flora of the Park is dominated by forest-steppe trees and forest-type trees.The trees which belong to one life form often differ in the principles of growth and formation of the crown, branching, and general habitus, which is generally considered as an architectural model of a particular species. According to the classification of architectural models by F. Alle, R. Oldeman and P. Tomlinson, in the flora of the Park, there are five models among which the species formed by the model of Tomlinson have a significant representation, and the species formed by the models of Manzheno and Champagne have a smaller representation.Key words:flora, tree, classification, life form, bush. З метою збереження, відтворення і ефективного використання природних комплексів та об’єктів дельти річки Дніпро як одного з найцінніших природних заплавно-літоральних комплексів у Європі, які мають особливу природоохоронну, оздоровчу, історико-культурну, наукову, освітню та естетичну цінність, забезпечення збереження водно-болотного угіддя міжнародного значення «Дельта р. Дніпро» створено Національний природний парк «Нижньодніпровський» (Указ президента України від 24 листопада 2015 року No 657/2015).Флора вищих судинних рослин Парку попередньо складає 820 видів, з них 40 видів (4,9% від загальної кількості) –деревні рослини.Провідні родини дендрофлори Парку –Rosaceae Juss. (14 видів), SalicaceaeMirb. (7 видів), AceraceaeJuss. (3 види). Біоморфологічну характеристику видів деревних рослин у флорі національного природнього парку «Нижньодніпровський» проведено за класифікаціями: 1) система життєвих форм рослин К. Раункієра; 2) еколого-морфологічна класифікація життєвих форм І. Г. Сєрєбрякова; 3) архітектурні моделі Ф. Аллє, Р. Ольдемана і П. Томлінсона; 4)класифікація життєвих форм рослин помірної зони, яка враховує вегетативне розмноження О. В. Смирнової, Л. Б. Заугольнової.Аналіз типів біоморф за класифікацією К. Раункієра показав, що переважна більшість видів дендрофлори належить до фанерофітів, серед них, в залежності від висоти рослини, виділяють різні групи –мегафанерофіти (наприклад, Populus tremula), мезофанерофіти (Salix alba), мікрофанерофіти (Amorpha fruticosa), нанофанерофіти (Amygdalus nana) та хамефіти (Ephedra distachia).За еколого-морфологічною класифікацією життєвих форм І. Г. Сєрєбрякова у флорі Парку домінують дерева лісостепового типу та дерева лісового типу.Дерева, які відносяться до однієї життєвої форми, часто відрізняютьсяпринципами наростання та формування крони, галуженням, загальним габітусом, що загалом розглядається як архітектурна модель конкретного виду. За класифікацією архітектурних моделей Ф.Аллє, Р. Ольдемана і П. Томлінсона у флорі Парку виділено п’ять моделей, серед яких, значне представництво мають види, що формуються за моделлю Томлінсона, менше представництво мають види, що формуються за моделями Манжено та Шампанії.Ключові слова: флора, дерево, класифікація, життєва форма, кущ.


2010 ◽  
Vol 18 (4) ◽  
pp. 30-40 ◽  
Author(s):  
M. Tegelhoffová

Analysis of the development of a hydrological balance for future decades in the Senianska depression in the Eastern Slovak lowlandThe goal of the article was to analyze the hydrological balance for future decades in a pilot area in the Eastern Slovak lowland. The aim was to set up the physically-based Mike SHE hydrological model for the modeling hydrological balance in the selected wetland ecosystem in the Eastern Slovak Lowland. The pilot area - the Senianska depression is located near the village of Senne, between the Laborec and Uh Rivers. Specifically, it is a traditional landscape of meadows, marshes, cultivated soil, small water control structures and forests. To get a complete model set up for simulating elements of the hydrologic balance in the pilot area, it was necessary to devise a model for a larger area, which includes the pilot area - the Senianska depression. Therefore, both the Mike SHE model was set up for the Laborec River basin (a model domain of 500 × 500 m) and the Čierna voda River basin (a model domain of 100 × 100 m), for the simulation period of 1981-2007, is order to get the boundary conditions (overland flow depth, water levels, discharges and groundwater table) for the model of the pilot area. The Mike SHE model constructed for the pilot area - the Senianska depression (a model domain of 1 × 1 m) -was used to simulate the elements of the hydrological balance for the existing conditions during the simulation period of 1983-2007 and for climate scenarios for the simulation period of 1983-2100. The results of the simulated elements of the hydrological balance for the existing conditions were used for a comparison of the evolution of the hydrologic conditions in the past, for identifying wet and flooded areas and for identifying the spatial distribution of the actual evapotranspiration in the pilot area. The built-up model with setting values was used for modeling the hydrological balance in changed conditions - climate change.


Sign in / Sign up

Export Citation Format

Share Document