scholarly journals Czech Historical Atlas: A web map portal on the Czech history

2021 ◽  
Vol 3 ◽  
pp. 1-2
Author(s):  
Jiří Krejčí ◽  
Petra Jílková
Keyword(s):  

2020 ◽  
Vol 9 (10) ◽  
pp. 563
Author(s):  
Alejandro Zunino ◽  
Guillermo Velázquez ◽  
Juan Pablo Celemín ◽  
Cristian Mateos ◽  
Matías Hirsch ◽  
...  

Recent Web technologies such as HTML5, JavaScript, and WebGL have enabled powerful and highly dynamic Web mapping applications executing on standard Web browsers. Despite the complexity for developing such applications has been greatly reduced by Web mapping libraries, developers face many choices to achieve optimal performance and network usage. This scenario is even more complex when considering different representations of geographical data (raster, raw data or vector) and variety of devices (tablets, smartphones, and personal computers). This paper compares the performance and network usage of three popular JavaScript Web mapping libraries for implementing a Web map using different representations for geodata, and executing on different devices. In the experiments, Mapbox GL JS achieved the best overall performance on mid and high end devices for displaying raster or vector maps, while OpenLayers was the best for raster maps on all devices. Vector-based maps are a safe bet for new Web maps, since performance is on par with raster maps on mid-end smartphones, with significant less network bandwidth requirements.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 26983-27002
Author(s):  
Vinicius Goncalves Braga ◽  
Sand Luz Correa ◽  
Kleber Vieira Cardoso ◽  
Aline Carneiro Viana
Keyword(s):  

2021 ◽  
Vol 14 ◽  
pp. 117862212110092
Author(s):  
Michele M Tobias ◽  
Alex I Mandel

Many studies in air, soil, and water research involve observations and sampling of a specific location. Knowing where studies have been previously undertaken can be a valuable addition to future research, including understanding the geographical context of previously published literature and selecting future study sites. Here, we introduce Literature Mapper, a Python QGIS plugin that provides a method for creating a spatial bibliography manager as well as a specification for storing spatial data in a bibliography manager. Literature Mapper uses QGIS’ spatial capabilities to allow users to digitize and add location information to a Zotero library, a free and open-source bibliography manager on basemaps or other geographic data of the user’s choice. Literature Mapper enhances the citations in a user’s online Zotero database with geo-locations by storing spatial coordinates as part of traditional citation entries. Literature Mapper receives data from and sends data to the user’s online database via Zotero’s web API. Using Zotero as the backend data storage, Literature Mapper benefits from all of its features including shared citation Collections, public sharing, and an open web API usable by additional applications, such as web mapping libraries. To evaluate Literature Mapper’s ability to provide insights into the spatial distribution of published literature, we provide a case study using the tool to map the study sites described in academic publications related to the biogeomorphology of California’s coastal strand vegetation, a line of research in which air movement, soil, and water are all driving factors. The results of this exercise are presented in static and web map form. The source code for Literature Mapper is available in the corresponding author’s GitHub repository: https://github.com/MicheleTobias/LiteratureMapper


2014 ◽  
pp. 1-1 ◽  
Author(s):  
Jun-Wei Hsieh ◽  
Chi-Hung Chuang ◽  
Salah Alghyaline ◽  
Hui-Fen Chiang ◽  
Chao-Hong Chiang

2017 ◽  
pp. 2485-2488
Author(s):  
Christopher D. Michaelis ◽  
Daniel P Ames
Keyword(s):  
Web Map ◽  

2019 ◽  
pp. 129-139
Author(s):  
Tamara Mykolayivna Kurach ◽  
Iryna Aleksandrovna Pidlisetskaya

The goal is to develop a tourist interactive map "Landmarks of Bohuslav". The methodology. The methodological and theoretical basis of the study is modern geographical and cartographic science in the field of thematic mapping with the involvement of web-mapping technologies. Results. A large-scale tourist web map of the cultural heritage of the Boguslavsky region - “Sights of Boguslavshchina” was created. Scientific novelty. Approbation of the methodology and technology for the development of interactive large-scale web maps of tourism topics involving the Leaflet JavaScript library. Practical value. An interactive tourist web map of the historical and cultural heritage sites “Sights of Bohuslavshchina” will be published on the website of the health-improving institution of sanatorium-type “Chaika”. Convenient using, visualization, prompt receipt of information will help to increase the attractiveness of tourist Boguslavschina routes.


Author(s):  
C. E. Kilsedar ◽  
F. Fissore ◽  
F. Pirotti ◽  
M. A. Brovelli

<p><strong>Abstract.</strong> Floods pose a risk that is likely to worsen in the future due to climate change. Therefore, it is essential that decision makers and domain experts have the tools to evaluate the effects of floods. We developed a tool that visualizes the earth and buildings in three dimensions to simulate floods so that effective strategies can be developed to enhance resilience and mitigate the effects of floods. We opted to use open standards and free and open source software (FOSS) for Web to maximize interoperability, replicability, reusability, and accessibility. As a result of the literature review, we decided to use CityGML and CesiumJS for three-dimensional geospatial data visualization. However, as CityGML data is not available for the cities that our project focuses on, we developed software called shp2city that converts Esri shapefile to CityGML data in LOD1 or LOD2. Moreover, as CityGML data cannot be immediately used with CesiumJS, we used 3DCityDB to store, represent, and manage the CityGML data; 3DCityDB Importer/Exporter to export the CityGML data in KML/COLLADA/glTF format to be used within the 3DCityDB Web-Map-Client that is based on CesiumJS for visualization. Finally, we simulated floods to aid in the informed decision-making process regarding adaptation measures and mitigation of flooding effects.</p>


2015 ◽  
Vol 19 (suppl. 2) ◽  
pp. 427-435 ◽  
Author(s):  
Jelena Lukovic ◽  
Branislav Bajat ◽  
Milan Kilibarda ◽  
Dejan Filipovic

Solar radiation is a key driving force for many natural processes. At the Earth?s surface solar radiation is the result of complex interactions between the atmosphere and Earth?s surface. Our study highlights the development and evaluation of a data base of potential solar radiation that is based on a digital elevation model (DEM) with a resolution of 90 m over Serbia. The main aim of this paper is to map solar radiation in Serbia using DEM. This is so far the finest resolution being applied and presented using DEM. The final results of the potential direct, diffuse and total solar radiation as well as duration of insolation databases of Serbia are portrayed as thematic maps that can be communicated and shared easily through the cartographic web map-based service.


The recent progress for spatial resolution of remote sensing imagery led to generate many types of Very HighResolution (VHR) satellite images, consequently, general speaking, it is possible to prepare accurate base map larger than 1:10,000 scale. One of these VHR satellite image is WorldView-3 sensor that launched in August 2014. The resolution of 0.31m makes WorldView-3 the highest resolution commercial satellite in the world. In the current research, a pan-sharpen image from that type, covering an area at Giza Governorate in Egypt, used to determine the suitable large-scale map that could be produced from that image. To reach this objective, two different sources for acquiring Ground Control Points (GCPs). Firstly, very accurate field measurements using GPS and secondly, Web Map Service (WMS) server (in the current research is Google Earth) which is considered a good alternative when GCPs are not available, are used. Accordingly, three scenarios are tested, using the same set of both 16 Ground Control Points (GCPs) as well as 14 Check Points (CHKs), used for evaluation the accuracy of geometric correction of that type of images. First approach using both GCPs and CHKs coordinates acquired by GPS. Second approach using GCPs coordinates acquired by Google Earth and CHKs acquired by GPS. Third approach using GCPs and CHKs coordinates by Google Earth. Results showed that, first approach gives Root Mean Square Error (RMSE) planimeteric discrepancy for GCPs of 0.45m and RMSE planimeteric discrepancy for CHKs of 0.69m. Second approach gives RMSE for GCPs of 1.10m and RMSE for CHKs of 1.75m. Third approach gives RMSE for GCPs of 1.10m and RMSE for CHKs of 1.40m. Taking map accuracy specification of 0.5mm of map scale, the worst values for CHKs points (1.75m&1,4m) resulted from using Google Earth as a source, gives the possibility of producing 1:5000 large-scale map compared with the best value of (0.69m) (map scale 1:2500). This means, for the given parameters of the current research, large scale maps could be produced using Google Earth, in case of GCPs are not available accurately from the field surveying, which is very useful for many users.


Sign in / Sign up

Export Citation Format

Share Document