Site-level simulations of measurable soil fractions with Millennial Version 2

2021 ◽  
Author(s):  
Rose Abramoff ◽  
Bertrand Guenet ◽  
Haicheng Zhang ◽  
Katerina Georgiou ◽  
Xiaofeng Xu ◽  
...  

<p>Soil carbon (C) models are used to predict C sequestration responses to climate and land use change. Yet, the soil models embedded in Earth system models typically do not represent processes that reflect our current understanding of soil C cycling, such as microbial decomposition, mineral association, and aggregation. Rather, they rely on conceptual pools with turnover times that are fit to bulk C stocks and/or fluxes. As measurements of soil fractions become increasingly available, soil C models that represent these measurable quantities can be evaluated more accurately. Here we present Version 2 (V2) of the Millennial model, a soil model developed to simulate C pools that can be measured by extraction or fractionation, including particulate organic C, mineral-associated organic C, aggregate C, microbial biomass, and dissolved organic C. Model processes have been updated to reflect the current understanding of mineral-association, temperature sensitivity and reaction kinetics, and different model structures were tested within an open-source framework. We evaluated the ability of Millennial V2 to simulate total soil organic C (SOC), as well as the mineral-associated and particulate fractions, using three soil fractionation data sets spanning a range of climate and geochemistry in Australia (N=495), Europe (N=176), and across the globe (N=730). Millennial V2 (RMSE = 1.98 – 4.76 kg, AIC = 597 – 1755) generally predicts SOC content better than the widely-used Century model (RMSE = 2.23 – 4.8 kg, AIC = 584 – 2271), despite an increase in process complexity and number of parameters. Millennial V2 reproduces between-site variation in SOC across a gradient of plant productivity, and predicts SOC turnover times similar to those of a global meta-analysis. Millennial V2 updates the conceptual Century model pools and processes and represents our current understanding of the roles that microbial activity, mineral association and aggregation play in soil C sequestration.</p>

2021 ◽  
Author(s):  
Rose Abramoff ◽  
Bertrand Guenet ◽  
Haicheng Zhang ◽  
Katerina Georgiou ◽  
Xiaofeng Xu ◽  
...  

<p>Soil carbon (C) models are used to predict C sequestration responses to climate and land use change. Yet, the soil models embedded in Earth system models typically do not represent processes that reflect our current understanding of soil C cycling, such as microbial decomposition, mineral association, and aggregation. Rather, they rely on conceptual pools with turnover times that are fit to bulk C stocks and/or fluxes. As measurements of soil fractions become increasingly available, it is necessary for soil C models to represent these measurable quantities so that model processes can be evaluated more accurately. Here we present Version 2 (V2) of the Millennial model, a soil model developed in 2018 to simulate C pools that can be measured by extraction or fractionation, including particulate organic C, mineral-associated organic C, aggregate C, microbial biomass, and dissolved organic C. Model processes have been updated to reflect the current understanding of mineral-association, temperature sensitivity and reaction kinetics, and different model structures were tested within an open-source framework. We evaluated the ability of Millennial V2 to simulate total soil organic C (SOC), as well as the mineral-associated and particulate fractions, using three independent data sets of soil fractionation measurements spanning a range of climate and geochemistry in Australia (N=495), Europe (N=176), and across the globe (N=716). Considering RMSE and AIC as indices of model performance, site-level evaluations show that Millennial V2 predicts soil organic carbon content better than the widely-used Century model, despite an increase in process complexity and number of parameters. Millennial V2 also reproduces between-site variation in SOC across gradients of climate, plant productivity, and soil type. By including the additional constraints of measured soil fractions, we can predict site-level mean residence times similar to a global distribution of mean residence times measured using SOC/respiration rate under an assumption of steady state. The Millennial V2 model updates the conceptual Century model pools and processes and represents our current understanding of the roles that microbial activity, mineral association and aggregation play in soil C sequestration.</p>


Soil Research ◽  
2014 ◽  
Vol 52 (5) ◽  
pp. 476 ◽  
Author(s):  
Eleanor Hobley ◽  
Garry R. Willgoose ◽  
Silvia Frisia ◽  
Geraldine Jacobsen

Both aggregation and mineral association have been previously found to enhance soil organic carbon (SOC) storage (the amount of organic C retained in a soil), and stability (the length of time organic C is retained in a soil). These mechanisms are therefore attractive targets for soil C sequestration. In this study, we investigate and compare SOC storage and stability of SOC associated with fine minerals and stored within aggregates using a combination of particle-size fractionation, elemental analysis and radiocarbon dating. In this heavy-textured, highly aggregated soil, SOC was found to be preferentially associated with fine minerals throughout the soil profile. By contrast, the oldest SOC was located in the coarsest, most highly aggregated fraction. In the topsoil, radiocarbon ages of the aggregate-associated SOC indicate retention times in the order of centuries. Below the topsoil, retention times of aggregate-SOC are in the order of millennia. Throughout the soil profile, radiocarbon dates indicate an enhanced stability in the order of centuries compared with the fine mineral fraction. Despite this, the radiocarbon ages of the mineral-associated SOC were in the order of centuries to millennia in the subsoil (30–100 cm), indicating that mineral-association is also an effective stabilisation mechanism in this subsoil. Our results indicate that enhanced SOC storage does not equate to enhanced SOC stability, which is an important consideration for sequestration schemes targeting both the amount and longevity of soil carbon.


2000 ◽  
Vol 80 (3) ◽  
pp. 429-435 ◽  
Author(s):  
D. Curtin ◽  
F. Selles ◽  
H. Wang ◽  
R. P. Zentner ◽  
C. A. Campbell

Planting of cultivated land with perennial forages may increase C sequestration in soil organic matter and contribute to atmospheric CO2 mitigation strategies. However, little is known of the effectiveness of introduced grasses in restoring organic C in cultivated soils of the Canadian prairies. Our objective was to evaluate the C sequestration potential of crested wheatgrass (CWG) (Agropyron cristatum L. Gaertn.), a widely introduced, early-season grass. In 1995 and 1996, we measured soil CO2 fluxes, C inputs in plant material and total soil C under CWG and a fallow-wheat (Triticum aestivum L.)-wheat rotation (F-W-W). These were two of the treatments in a replicated crop rotation experiment initiated in 1987 in southwestern Saskatchewan on a medium-textured soil that had previously been under long-term wheat production. Average to above-average growing season (1 May to 31 July) precipitation in 1995–1996 resulted in annual inputs of C in wheat residues of 3000–4500 kg ha−1. Growth of CWG, which was hayed and removed, was relatively poor in both years, but especially in 1995 when dry matter yield was only 1300 kg ha−1. For the 1988–1996 period, there was a strong correlation (R2 = 0.81; P < 0.001) between CWG yield and precipitation received in May, showing the importance of early spring rains determining CWG yield and C inputs to the soil. Carbon inputs under CWG (1200 kg ha−1 in 1995 and 2400 kg ha−1 in 1996) were less than under wheat but CO2-C emissions were similar under CWG and wheat. Soil C measurements in fall 1996 confirmed that CWG did not gain C relative to the F-W-W rotation. Although failure of CWG soil to store more C than cultivated soil may be partly because weather conditions during the experiment were more favourable for wheat than CWG, our results cast doubt on the ability of CWG to restore C stocks in prairie soils degraded by long-term cropping. Key words: Carbon sequestation, carbon dioxide emissions, wheat, crested wheatgrass, fallow


2011 ◽  
Vol 47 (Special Issue) ◽  
pp. S39-S42 ◽  
Author(s):  
G. Civeira

Recently soils have gained more attention within the global change debate as the largest terrestrial carbon (C) pool. Different soils and vegetation types have substantial impacts on many of the processes that take place in the ecosystem functioning and thus in soil organic C stocks. An accurate estimation of vegetation C inputs to soils may aid in more precise estimation of the future release or sequestration of soil organic C. Wheat production affects C inputs and thus soil C sequestration in soils. The objective of this research was to evaluate C inputs by wheat, from 1993 to 2002 in the Pampas Region. The estimated C input rate by wheat was greater in the humid subregion than in the semiarid subregion: 0.9 and 0.75 Mg C/ha/year, correspondingly. This pattern agrees with the observation that precipitation constrains plant production in arid to subhumid ecosystems. The average organic C input by wheat into the soils throughout the period was 8.1 Mg C/ha in the humid subregion and, 6.75 Mg C/ha in the semiarid subregion.


Solid Earth ◽  
2012 ◽  
Vol 3 (2) ◽  
pp. 375-386 ◽  
Author(s):  
M. Muñoz-Rojas ◽  
A. Jordán ◽  
L. M. Zavala ◽  
D. De la Rosa ◽  
S. K. Abd-Elmabod ◽  
...  

Abstract. Soil C sequestration through changes in land use and management is one of the sustainable and long-term strategies to mitigate climate change. This research explores and quantifies the role of soil and land use as determinants of the ability of soils to store C along Mediterranean systems. Detailed studies of soil organic C (SOC) dynamics are necessary in order to identify factors determining fluctuations and intensity of changes. In this study, SOC contents from different soil and land use types have been investigated in Andalusia (Southern Spain). We have used soil information from different databases, as well as land use digital maps, climate databases and digital elevation models. The average SOC content for each soil control section (0–25, 25–50 and 50–75 cm) was determined and SOC stocks were calculated for each combination of soil and land use type, using soil and land cover maps. The total organic C stocks in soils of Andalusia is 415 Tg for the upper 75 cm, with average values ranging from 15.9 Mg C ha−1 (Solonchaks under "arable land") to 107.6 Mg C ha−1 (Fluvisols from "wetlands"). Up to 55% of SOC accumulates in the top 25 cm of soil (229.7 Tg). This research constitutes a preliminary assessment for modelling SOC stock under scenarios of land use and climate change.


2015 ◽  
Vol 39 (1) ◽  
pp. 232-242 ◽  
Author(s):  
Jean Dalmo de Oliveira Marques ◽  
Flávio Jesus Luizão ◽  
Wenceslau Geraldes Teixeira ◽  
Max Sarrazin ◽  
Sávio José Filgueira Ferreira ◽  
...  

Organic matter plays an important role in many soil properties, and for that reason it is necessary to identify management systems which maintain or increase its concentrations. The aim of the present study was to determine the quality and quantity of organic C in different compartments of the soil fraction in different Amazonian ecosystems. The soil organic matter (FSOM) was fractionated and soil C stocks were estimated in primary forest (PF), pasture (P), secondary succession (SS) and an agroforestry system (AFS). Samples were collected at the depths 0-5, 5-10, 10-20, 20-40, 40-60, 60-80, 80-100, 100-160, and 160-200 cm. Densimetric and particle size analysis methods were used for FSOM, obtaining the following fractions: FLF (free light fraction), IALF (intra-aggregate light fraction), F-sand (sand fraction), F-clay (clay fraction) and F-silt (silt fraction). The 0-5 cm layer contains 60 % of soil C, which is associated with the FLF. The F-clay was responsible for 70 % of C retained in the 0-200 cm depth. There was a 12.7 g kg-1 C gain in the FLF from PF to SS, and a 4.4 g kg-1 C gain from PF to AFS, showing that SS and AFS areas recover soil organic C, constituting feasible C-recovery alternatives for degraded and intensively farmed soils in Amazonia. The greatest total stocks of carbon in soil fractions were, in decreasing order: (101.3 Mg ha-1 of C - AFS) > (98.4 Mg ha-1 of C - FP) > (92.9 Mg ha-1 of C - SS) > (64.0 Mg ha-1 of C - P). The forms of land use in the Amazon influence C distribution in soil fractions, resulting in short- or long-term changes.


2014 ◽  
Vol 94 (6) ◽  
pp. 1025-1032 ◽  
Author(s):  
F. L. Walley ◽  
A. W. Gillespie ◽  
Adekunbi B. Adetona ◽  
J. J. Germida ◽  
R. E. Farrell

Walley, F. L., Gillespie, A. W., Adetona, A. B., Germida, J. J. and Farrell, R. E. 2014. Manipulation of rhizosphere organisms to enhance glomalin production and C-sequestration: Pitfalls and promises. Can. J. Plant Sci. 94: 1025–1032. Arbuscular mycorrhizal fungi (AMF) reportedly produce glomalin, a glycoprotein that has the potential to increase soil carbon (C) and nitrogen (N) storage. We hypothesized that interactions between rhizosphere microorganisms, such as plant growth-promoting rhizobacteria (PGPR), and AMF, would influence glomalin production. Our objectives were to determine the effects of AMF/PGPR interactions on plant growth and glomalin production in the rhizosphere of pea (Pisum sativum L.) with the goal of enhancing C and N storage in the rhizosphere. One component of the study focussed on the molecular characterization of glomalin and glomalin-related soil protein (GRSP) using complementary synchrotron-based N and C X-ray absorption near-edge structure (XANES) spectroscopy, pyrolysis field ionization mass spectrometry (Py-FIMS), and proteomics techniques to characterize specific organic C and N fractions associated with glomalin production. Our research ultimately led us to conclude that the proteinaceous material extracted, and characterized in the literature, as GRSP is not exclusively of AMF origin. Our research supports the established concept that GRSP is important to soil quality, and C and N storage, irrespective of origin. However, efforts to manipulate this important soil C pool will remain compromised until we more clearly elucidate the chemical nature and origin of this resource.


Soil Research ◽  
2012 ◽  
Vol 50 (2) ◽  
pp. 83 ◽  
Author(s):  
W. E. Cotching

Soil carbon (C) stocks were calculated for Tasmanian soil orders to 0.3 and 1.0 m depth from existing datasets. Tasmanian soils have C stocks of 49–117 Mg C/ha in the upper 0.3 m, with Ferrosols having the largest soil C stocks. Mean soil C stocks in agricultural soils were significantly lower under intensive cropping than under irrigated pasture. The range in soil C within soil orders indicates that it is critical to determine initial soil C stocks at individual sites and farms for C accounting and trading purposes, because the initial soil C content will determine if current or changed management practices are likely to result in soil C sequestration or emission. The distribution of C within the profile was significantly different between agricultural and forested land, with agricultural soils having two-thirds of their soil C in the upper 0.3 m, compared with half for forested soils. The difference in this proportion between agricultural and forested land was largest in Dermosols (0.72 v. 0.47). The total amount of soil C in a soil to 1.0 m depth may not change with a change in land use, but the distribution can and any change in soil C deeper in the profile might affect how soil C can be managed for sequestration. Tasmanian soil C stocks are significantly greater than those in mainland states of Australia, reflecting the lower mean annual temperature and higher precipitation in Tasmania, which result in less oxidation of soil organic matter.


2018 ◽  
Author(s):  
Natalia Andrea Osinaga ◽  
Carina Rosa Álvarez ◽  
Miguel Angel Taboada

Abstract. Abstract. The sub-humid Chaco region of Argentina, originally covered by dry sclerophyll forest, has been subjected to clearing since the end of the '70 and replacement of the forest by no till farming. Land use changes produced a decrease in aboveground carbon stored in forests, but little is known about the impact on soil organic C stocks. The aim of this study was to evaluate soil C stocks and C fractions up to 1 m depth in soils under different land use:  20 yr continuous cropping, warm season grass pasture and native forest in 32 sites distributed over the Chaco region. The organic C stock content up to 1 m depth expressed as equivalent mass varied as follows: forest (119.3 Mg ha−1) > pasture (87.9 Mg ha−1) > continuous cropping (71.9 and 77.3 Mg ha−1), with no impact of the number of years under cropping. The most sensitive organic carbon fraction was the coarse particle fraction (2000 μm–212 μm) at 0–5 cm and 5–20 cm depth layers. Resistant carbon (


2018 ◽  
Vol 115 (11) ◽  
pp. 2776-2781 ◽  
Author(s):  
Lucas E. Nave ◽  
Grant M. Domke ◽  
Kathryn L. Hofmeister ◽  
Umakant Mishra ◽  
Charles H. Perry ◽  
...  

Soils are Earth’s largest terrestrial carbon (C) pool, and their responsiveness to land use and management make them appealing targets for strategies to enhance C sequestration. Numerous studies have identified practices that increase soil C, but their inferences are often based on limited data extrapolated over large areas. Here, we combine 15,000 observations from two national-level databases with remote sensing information to address the impacts of reforestation on the sequestration of C in topsoils (uppermost mineral soil horizons). We quantify C stocks in cultivated, reforesting, and natural forest topsoils; rates of C accumulation in reforesting topsoils; and their contribution to the US forest C sink. Our results indicate that reforestation increases topsoil C storage, and that reforesting lands, currently occupying >500,000 km2 in the United States, will sequester a cumulative 1.3–2.1 Pg C within a century (13–21 Tg C·y−1). Annually, these C gains constitute 10% of the US forest sector C sink and offset 1% of all US greenhouse gas emissions.


Sign in / Sign up

Export Citation Format

Share Document