Simulation of soil carbon dynamics in Australia with {\sc Roth C}

2021 ◽  
Author(s):  
Raphael Viscarra Rossel ◽  
Juhwan Lee ◽  
Mingxi Zhang ◽  
Zhongkui Luo ◽  
YingPing Wang

<p>We simulated soil organic carbon (C) dynamics across Australia with the Rothamsted carbon model ({\sc Roth C}) by connecting new spatially-explicit soil measurements and data with the model. This helped us to bridge the disconnection that exists between datasets used to inform the model and the processes that it depicts. We compiled publicly available continental-scale datasets and pre-processed, standardised and configured them to the required spatial and temporal resolutions. We then calibrated {\sc Roth C} and run simulations to estimate the baseline soil organic C stocks and composition in the 0--0.3~m layer at 4,043 sites in cropping, modified grazing, native grazing, and natural environments across Australia. We used data on the C fractions, the particulate, mineral associated, and resistant organic C (POC, MAOC and ROC, respectively) to represent the three main C pools in the {\sc Roth C} model's structure.<span class="Apple-converted-space">  </span>The model explained 97--98\% of the variation in measured total organic C in soils under cropping and grazing, and 65\% in soils under natural environments. We optimised the model at each site and experimented with different amounts of C inputs to simulate the potential for C accumulation under constant and chainging climate in a 100-year simulation. Soils under native grazing were the most potentially vulnerable to C decomposition and loss, while soils under natural environments were the least vulnerable. An empirical assessment of the controls on the C change showed that climate, pH, total N, the C:N ratio, and cropping were the most important controls on POC change. Clay content and climate were dominant controls on MAOC change. Consistent and explicit soil organic C simulations improve confidence in the model's estimations, contributing to the development of sustainable soil management under global change.<span class="Apple-converted-space"> </span></p>

2020 ◽  
Author(s):  
Juhwan Lee ◽  
Raphael A. Viscarra Rossel ◽  
Zhongkui Luo ◽  
Ying Ping Wang

Abstract. We simulated soil organic carbon (C) dynamics across Australia with the Rothamsted carbon model (Rᴏᴛʜ C) under a framework that connects new spatially-explicit soil measurements and data with the model. Doing so helped to bridge the disconnection that exists between datasets used to inform the model and the processes that it depicts. Under this framework, we compiled continental-scale datasets and pre-processed, standardised and configured them to the required spatial and temporal resolutions. We then calibrated Rᴏᴛʜ C and run simulations to predict the baseline soil organic C stocks and composition in the 0–0.3 m layer at 4,043 sites in cropping, modified grazing, native grazing, and natural environments across Australia. The Rᴏᴛʜ C model uses measured C fractions, the particulate, humus, and resistant organic C (POC, HOC and ROC, respectively) to represent the three main C pools in its structure. The model explained 97–98 % of the variation in measured total organic C in soils under cropping and grazing, and 65 % in soils under natural environments. We optimised the model at each site and experimented with different amounts of C inputs to predict the potential for C accumulation in a 100-year simulation. With an annual increase of 1 Mg C ha−1 in C inputs, the model predicted a potential soil C increase of 13.58 (interquartile range 12.19–15.80), 14.21 (12.38–16.03), and 15.57 (12.07–17.82) Mg C ha−1 under cropping, modified grazing and native grazing, and 3.52 (3.15–4.09) Mg C ha−1 under natural environments. Soils under native grazing were the most potentially vulnerable to C decomposition and loss, while soils under natural environments were the least vulnerable. An empirical assessment of the controls on the C change showed that climate, pH, total N, the C:N ratio, and cropping were the most important controls on POC change. Clay content and climate were dominant controls on HOC change. Consistent and explicit soil organic C simulations improve confidence in the model's predictions, contributing to the development of sustainable soil management under global change.


2021 ◽  
Vol 18 (18) ◽  
pp. 5185-5202
Author(s):  
Juhwan Lee ◽  
Raphael A. Viscarra Rossel ◽  
Mingxi Zhang ◽  
Zhongkui Luo ◽  
Ying-Ping Wang

Abstract. Land use and management practices affect the response of soil organic carbon (C) to global change. Process-based models of soil C are useful tools to simulate C dynamics, but it is important to bridge any disconnect that exists between the data used to inform the models and the processes that they depict. To minimise that disconnect, we developed a consistent modelling framework that integrates new spatially explicit soil measurements and data with the Rothamsted carbon model (Roth C) and simulates the response of soil organic C to future climate change across Australia. We compiled publicly available continental-scale datasets and pre-processed, standardised and configured them to the required spatial and temporal resolutions. We then calibrated Roth C and ran simulations to estimate the baseline soil organic C stocks and composition in the 0–0.3 m layer at 4043 sites in cropping, modified grazing, native grazing and natural environments across Australia. We used data on the C fractions, the particulate, mineral-associated and resistant organic C (POC, MAOC and ROC, respectively) to represent the three main C pools in the Roth C model's structure. The model explained 97 %–98 % of the variation in measured total organic C in soils under cropping and grazing and 65 % in soils under natural environments. We optimised the model at each site and experimented with different amounts of C inputs to simulate the potential for C accumulation under constant climate in a 100-year simulation. With an annual increase of 1 Mg C ha−1 in C inputs, the model simulated a potential soil C increase of 13.58 (interquartile range 12.19–15.80), 14.21 (12.38–16.03) and 15.57 (12.07–17.82) Mg C ha−1 under cropping, modified grazing and native grazing and 3.52 (3.15–4.09) Mg C ha−1 under natural environments. With projected future changes in climate (+1.5, 2 and 5.0 ∘C) over 100 years, the simulations showed that soils under natural environments lost the most C, between 3.1 and 4.5 Mg C ha−1, while soils under native grazing lost the least, between 0.4 and 0.7 Mg C ha−1. Soil under cropping lost between 1 and 2.7 Mg C ha−1, while those under modified grazing showed a slight increase with temperature increases of 1.5 ∘C, but with further increases of 2 and 5 ∘C the median loss of TOC was 0.28 and 3.4 Mg C ha−1, respectively. For the different land uses, the changes in the C fractions varied with changes in climate. An empirical assessment of the controls on the C change showed that climate, pH, total N, the C : N ratio and cropping were the most important controls on POC change. Clay content and climate were dominant controls on MAOC change. Consistent and explicit soil organic C simulations improve confidence in the model's estimations, facilitating the development of sustainable soil management under global change.


Soil Research ◽  
2018 ◽  
Vol 56 (3) ◽  
pp. 318 ◽  
Author(s):  
R. M. Lebenya ◽  
C. W. van Huyssteen ◽  
C. C. du Preez

Scientific studies report decreases, increases, or negligible changes in soil organic carbon (C) stocks upon afforestation; however, these studies neglect the potential role of total nitrogen (N), tree species, and soil drainage class on these changes. This paper therefore aimed to quantify the change in soil organic C and total N stocks in the Weatherley catchment, eight years after conversion of grassland to forestry. Twenty-seven soil profile sites in this catchment, situated in the north-eastern corner of the Eastern Cape Province of South Africa, were sampled to determine the soil organic C and total N concentrations for the estimation of stocks. These sites represented different vegetation (Pinus elliottii, P. patula, Eucalyptus nitens, and grass) and soil drainage class (poorly, moderately, and freely drained soils) areas. Eighteen of the 27 sites studied had decreases, and nine sites had increases in organic C stocks in the 0–300 mm soil layer after eight years of afforestation. Total N decreased in 18 sites and increased at nine sites. Eight years of afforestation with P. elliottii and E. nitens significantly decreased stocks of soil organic C (from 47.6 to 38.8 Mg/ha) and total N (from 3.22 to 2.87 Mg/ha), whereas P. patula only slightly increased the corresponding stocks from 43.8 to 48.6 Mg C/ha and from 2.80 to 3.68 Mg N/ha. Both soil organic C and total N stocks decreased in all three soil drainage classes upon afforestation. It is proposed that these findings be corroborated after another 8–10 years of afforestation.


1996 ◽  
Vol 76 (3) ◽  
pp. 395-401 ◽  
Author(s):  
C. A. Campbell ◽  
B. G. McConkey ◽  
R. P. Zentner ◽  
F. Selles ◽  
D. Curtin

Soil organic matter contributes to the productivity and physical well-being of soils. An 11-yr study was conducted on a clay soil in the Brown soil zone in southwestern Saskatchewan to determine the influence of tillage and cropping frequency on soil organic C and total N content. Carbon and N behaved in a similar manner. Cropping frequency did not affect soil organic C or total N content, but soil C and N were greater under no-tillage (NT) than under mechanically tilled continuous wheat (Triticum aestivum L.) (Cont W) and fallow-wheat (F-W) rotations. Effects were apparent in the 0– to 7.5– and 7.5– to 15-cm depths. Over the 11-yr period, F-W (minimum tillage) gained no additional C; Cont W (conventional tillage) gained 2 t C ha−1, and both Cont W (NT) and F-W (NT) gained 5 t C ha−1. Changes in organic C and N were greatest in the final 4 yr of the experiment when crop residue production was greatest. Using data from two similar experiments conducted during the same period on soils differing in texture, we demonstrated that C gains were directly related to clay content of the soils. Thus, when attempting to estimate C storage in soils, we must consider both residue input and soil clay content. Key words: Organic C, total N, organic matter, soil texture, bulk density


2015 ◽  
Vol 153 ◽  
pp. 28-35 ◽  
Author(s):  
Peng Zhang ◽  
Ting Wei ◽  
Yuling Li ◽  
Ke Wang ◽  
Zhikuan Jia ◽  
...  

2008 ◽  
Vol 32 (3) ◽  
pp. 1253-1260 ◽  
Author(s):  
Fabiano de Carvalho Balieiro ◽  
Marcos Gervasio Pereira ◽  
Bruno José Rodrigues Alves ◽  
Alexander Silva de Resende ◽  
Avílio Antonio Franco

In spite of the normally low content of organic matter found in sandy soils, it is responsible for almost the totality of cation exchange capacity (CEC), water storage and availability of plant nutrients. It is therefore important to evaluate the impact of alternative forest exploitation on the improvement of soil C and N accumulation on these soils. This study compared pure and mixed plantations of Eucalyptus grandis and Pseudosamanea guachapele, a N2-fixing leguminous tree, in relation to their effects on soil C and N stocks. The studied Planosol area had formerly been covered by Panicum maximum pasture for at least ten years without any fertilizer addition. To estimate C and N contents, the soil was sampled (at depths of 0-2.5; 2.5-5.0; 5.0-7.5; 7.5-10.0; 10.0-20.0 and 20.0-40.0 cm), in pure and mixed five-year-old tree plantations, as well as on adjacent pasture. The natural abundance 13C technique was used to estimate the contribution of the soil organic C originated from the trees in the 0-10 cm soil layer. Soil C and N stocks under mixed plantation were 23.83 and 1.74 Mg ha-1, respectively. Under guachapele, eucalyptus and pasture areas C stocks were 14.20, 17.19 and 24.24 Mg ha-1, respectively. For these same treatments, total N contents were 0.83; 0.99 and 1.71 Mg ha-1, respectively. Up to 40 % of the soil organic C in the mixed plantation was estimated to be derived from trees, while in pure eucalyptus and guachapele plantations these same estimates were only 19 and 27 %, respectively. Our results revealed the benefits of intercropped leguminous trees in eucalyptus plantations on soil C and N stocks.


2017 ◽  
Vol 51 (10) ◽  
pp. 5630-5641 ◽  
Author(s):  
Raphael A. Viscarra Rossel ◽  
Craig R. Lobsey ◽  
Chris Sharman ◽  
Paul Flick ◽  
Gordon McLachlan

2021 ◽  
Author(s):  
Mei Liu ◽  
Jia-Hao Wen ◽  
Ya-Mei Chen ◽  
Wen-Juan Xu ◽  
Qiong Wang ◽  
...  

Abstract Aims Plant-derived carbon (C) inputs via foliar litter, root litter and root exudates are key drivers of soil organic C stocks. However, the responses of these three input pathways to climate warming have rarely been studied in alpine shrublands. Methods By employing a three-year warming experiment (increased by1.3 ℃), we investigated the effects of warming on the relative C contributions from foliar litter, root litter and root exudates from Sibiraea angustata, a dominant shrub species in an alpine shrubland on the eastern Qinghai-Tibetan Plateau. Important Findings The soil organic C inputs from foliar litter, root litter and root exudates were 77.45, 90.58 and 26.94 g C m -2, respectively. Warming only slightly increased the soil organic C inputs from foliar litter and root litter by 8.04 and 11.13 g C m -2, but significantly increased the root exudate C input by 15.40 g C m -2. Warming significantly increased the relative C contributions of root exudates to total C inputs by 4.6% but slightly decreased those of foliar litter and root litter by 2.5% and 2.1%, respectively. Our results highlight that climate warming may stimulate plant-derived C inputs into soils mainly through root exudates rather than litter in alpine shrublands on the Qinghai-Tibetan Plateau.


2017 ◽  
Vol 10 (1) ◽  
pp. 325
Author(s):  
Hebert D. A. Abobi ◽  
Armand W. Koné ◽  
Bernard Y. Koffi ◽  
Saint Salomon F. Diahuissié ◽  
Stanislas K. Loukou ◽  
...  

Poultry litter is increasingly used as organic amendment in market gardening in Côte d’Ivoire. To know about the sustainability of this practice, its impacts on soil quality should be known. This study aimed at assessing the effect on soil fertility of composted poultry litter addition for 16 years following two distinct ways, and identifying soil parameters driving cucumber yield. Trials were laid out in a Fisher randomized block design with 3 treatments replicated 5 times each: Control (C), Surface-applied compost (SAC) and Buried compost (BC). Soil (0-20 cm) chemical characteristics and cucumber growth and yield parameters were measured. Values of all parameters were higher with compost addition compared to the control, except for the C:N ratio. SAC and BC showed similar values of organic C, total N, CEC, pH and available phosphorus. However, Ca2+, Mg2+, K+ and base saturation were higher in SAC than in BC. Relative to values in the control, the greatest changes in soil parameters were observed with exchangeable cations, followed by soil organic matter. Soil organic C and total N concentrations have doubled in SAC while Ca2+, Mg2+, and K+ increased at greater rate (702.4, 400.9 and 186.67% respectively). Also, cucumber growth parameters were the highest with compost addition compared to the control. Significant effect of the compost application way on cucumber was also observed: collar diameter, leaf area and fresh fruit yield in SAC (0.72±0.02 cm, 258.9±12.3 cm2, 11.1±1.3 t ha-1, respectively) were higher than in BC (0.56±0.01 cm, 230.2±2.5 cm2, 5.4±0.5 t ha-1 respectively). Fruit yields in SAC and BC were four times and twice higher than in the control (2.6±0.3 t ha-1), respectively. Cucumber growth parameters were determined by soil concentration in Mg2+ while yield was determined by Ca2+. Composted poultry litter should be promoted for a sustainable soil fertility management in vegetable farming systems.


2019 ◽  
Vol 10 (2) ◽  
pp. 233-255 ◽  
Author(s):  
Efrén López-Blanco ◽  
Jean-François Exbrayat ◽  
Magnus Lund ◽  
Torben R. Christensen ◽  
Mikkel P. Tamstorf ◽  
...  

Abstract. There is a significant knowledge gap in the current state of the terrestrial carbon (C) budget. Recent studies have highlighted a poor understanding particularly of C pool transit times and of whether productivity or biomass dominate these biases. The Arctic, accounting for approximately 50 % of the global soil organic C stocks, has an important role in the global C cycle. Here, we use the CARbon DAta MOdel (CARDAMOM) data-assimilation system to produce pan-Arctic terrestrial C cycle analyses for 2000–2015. This approach avoids using traditional plant functional type or steady-state assumptions. We integrate a range of data (soil organic C, leaf area index, biomass, and climate) to determine the most likely state of the high-latitude C cycle at a 1∘ × 1∘ resolution and also to provide general guidance about the controlling biases in transit times. On average, CARDAMOM estimates regional mean rates of photosynthesis of 565 g C m−2 yr−1 (90 % confidence interval between the 5th and 95th percentiles: 428, 741), autotrophic respiration of 270 g C m−2 yr−1 (182, 397) and heterotrophic respiration of 219 g C m−2 yr−1 (31, 1458), suggesting a pan-Arctic sink of −67 (−287, 1160) g Cm−2 yr−1, weaker in tundra and stronger in taiga. However, our confidence intervals remain large (and so the region could be a source of C), reflecting uncertainty assigned to the regional data products. We show a clear spatial and temporal agreement between CARDAMOM analyses and different sources of assimilated and independent data at both pan-Arctic and local scales but also identify consistent biases between CARDAMOM and validation data. The assimilation process requires clearer error quantification for leaf area index (LAI) and biomass products to resolve these biases. Mapping of vegetation C stocks and change over time and soil C ages linked to soil C stocks is required for better analytical constraint. Comparing CARDAMOM analyses to global vegetation models (GVMs) for the same period, we conclude that transit times of vegetation C are inconsistently simulated in GVMs due to a combination of uncertainties from productivity and biomass calculations. Our findings highlight that GVMs need to focus on constraining both current vegetation C stocks and net primary production to improve a process-based understanding of C cycle dynamics in the Arctic.


Sign in / Sign up

Export Citation Format

Share Document