scholarly journals CNN-BASED INITIAL LOCALIZATION IMPROVED BY DATA AUGMENTATION

Author(s):  
M. S. Mueller ◽  
A. Metzger ◽  
B. Jutzi

<p><strong>Abstract.</strong> Image-based localization or camera re-localization is a fundamental task in computer vision and mandatory in the fields of navigation for robotics and autonomous driving or for virtual and augmented reality. Such image pose regression in 6 Degrees of Freedom (DoF) is recently solved by Convolutional Neural Networks (CNNs). However, already well-established methods based on feature matching still score higher accuracies so far. Therefore, we want to investigate how data augmentation could further improve CNN-based pose regression. Data augmentation is a valuable technique to boost performance on training based methods and wide spread in the computer vision community. Our aim in this paper is to show the benefit of data augmentation for pose regression by CNNs. For this purpose images are rendered from a 3D model of the actual test environment. This model again is generated by the original training data set, whereas no additional information nor data is required. Furthermore we introduce different training sets composed of rendered and real images. It is shown that the enhanced training of CNNs by utilizing 3D models of the environment improves the image localization accuracy. The accuracy of pose regression could be improved up to 69.37<span class="thinspace"></span>% for the position component and 61.61<span class="thinspace"></span>% for the rotation component on our investigated data set.</p>

Author(s):  
M. S. Mueller ◽  
T. Sattler ◽  
M. Pollefeys ◽  
B. Jutzi

<p><strong>Abstract.</strong> The performance of machine learning and deep learning algorithms for image analysis depends significantly on the quantity and quality of the training data. The generation of annotated training data is often costly, time-consuming and laborious. Data augmentation is a powerful option to overcome these drawbacks. Therefore, we augment training data by rendering images with arbitrary poses from 3D models to increase the quantity of training images. These training images usually show artifacts and are of limited use for advanced image analysis. Therefore, we propose to use image-to-image translation to transform images from a <i>rendered</i> domain to a <i>captured</i> domain. We show that translated images in the <i>captured</i> domain are of higher quality than the rendered images. Moreover, we demonstrate that image-to-image translation based on rendered 3D models enhances the performance of common computer vision tasks, namely feature matching, image retrieval and visual localization. The experimental results clearly show the enhancement on translated images over rendered images for all investigated tasks. In addition to this, we present the advantages utilizing translated images over exclusively captured images for visual localization.</p>


2019 ◽  
Vol 12 (2) ◽  
pp. 120-127 ◽  
Author(s):  
Wael Farag

Background: In this paper, a Convolutional Neural Network (CNN) to learn safe driving behavior and smooth steering manoeuvring, is proposed as an empowerment of autonomous driving technologies. The training data is collected from a front-facing camera and the steering commands issued by an experienced driver driving in traffic as well as urban roads. Methods: This data is then used to train the proposed CNN to facilitate what it is called “Behavioral Cloning”. The proposed Behavior Cloning CNN is named as “BCNet”, and its deep seventeen-layer architecture has been selected after extensive trials. The BCNet got trained using Adam’s optimization algorithm as a variant of the Stochastic Gradient Descent (SGD) technique. Results: The paper goes through the development and training process in details and shows the image processing pipeline harnessed in the development. Conclusion: The proposed approach proved successful in cloning the driving behavior embedded in the training data set after extensive simulations.


2019 ◽  
Vol 9 (6) ◽  
pp. 1128 ◽  
Author(s):  
Yundong Li ◽  
Wei Hu ◽  
Han Dong ◽  
Xueyan Zhang

Using aerial cameras, satellite remote sensing or unmanned aerial vehicles (UAV) equipped with cameras can facilitate search and rescue tasks after disasters. The traditional manual interpretation of huge aerial images is inefficient and could be replaced by machine learning-based methods combined with image processing techniques. Given the development of machine learning, researchers find that convolutional neural networks can effectively extract features from images. Some target detection methods based on deep learning, such as the single-shot multibox detector (SSD) algorithm, can achieve better results than traditional methods. However, the impressive performance of machine learning-based methods results from the numerous labeled samples. Given the complexity of post-disaster scenarios, obtaining many samples in the aftermath of disasters is difficult. To address this issue, a damaged building assessment method using SSD with pretraining and data augmentation is proposed in the current study and highlights the following aspects. (1) Objects can be detected and classified into undamaged buildings, damaged buildings, and ruins. (2) A convolution auto-encoder (CAE) that consists of VGG16 is constructed and trained using unlabeled post-disaster images. As a transfer learning strategy, the weights of the SSD model are initialized using the weights of the CAE counterpart. (3) Data augmentation strategies, such as image mirroring, rotation, Gaussian blur, and Gaussian noise processing, are utilized to augment the training data set. As a case study, aerial images of Hurricane Sandy in 2012 were maximized to validate the proposed method’s effectiveness. Experiments show that the pretraining strategy can improve of 10% in terms of overall accuracy compared with the SSD trained from scratch. These experiments also demonstrate that using data augmentation strategies can improve mAP and mF1 by 72% and 20%, respectively. Finally, the experiment is further verified by another dataset of Hurricane Irma, and it is concluded that the paper method is feasible.


Author(s):  
Chao Feng ◽  
Jie Xiong ◽  
Liqiong Chang ◽  
Fuwei Wang ◽  
Ju Wang ◽  
...  

Person identification plays a critical role in a large range of applications. Recently, RF based person identification becomes a hot research topic due to the contact-free nature of RF sensing that is particularly appealing in current COVID-19 pandemic. However, existing systems still have multiple limitations: i) heavily rely on the gait patterns of users for identification; ii) require a large amount of data to train the model and also extensive retraining for new users and iii) require a large frequency bandwidth which is not available on most commodity RF devices for static person identification. This paper proposes RF-Identity, an RFID-based identification system to address the above limitations and the contribution is threefold. First, by integrating walking pattern features with unique body shape features (e.g., height), RF-Identity achieves a high accuracy in person identification. Second, RF-Identity develops a data augmentation scheme to expand the size of the training data set, thus reducing the human effort in data collection. Third, RF-Identity utilizes the tag diversity in spatial domain to identify static users without a need of large frequency bandwidth. Extensive experiments show an identification accuracy of 94.2% and 95.9% for 50 dynamic and static users, respectively.


2021 ◽  
Vol 263 (2) ◽  
pp. 4558-4564
Author(s):  
Minghong Zhang ◽  
Xinwei Luo

Underwater acoustic target recognition is an important aspect of underwater acoustic research. In recent years, machine learning has been developed continuously, which is widely and effectively applied in underwater acoustic target recognition. In order to acquire good recognition results and reduce the problem of overfitting, Adequate data sets are essential. However, underwater acoustic samples are relatively rare, which has a certain impact on recognition accuracy. In this paper, in addition of the traditional audio data augmentation method, a new method of data augmentation using generative adversarial network is proposed, which uses generator and discriminator to learn the characteristics of underwater acoustic samples, so as to generate reliable underwater acoustic signals to expand the training data set. The expanded data set is input into the deep neural network, and the transfer learning method is applied to further reduce the impact caused by small samples by fixing part of the pre-trained parameters. The experimental results show that the recognition result of this method is better than the general underwater acoustic recognition method, and the effectiveness of this method is verified.


Diagnostics ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 104 ◽  
Author(s):  
Ahmed ◽  
Yigit ◽  
Isik ◽  
Alpkocak

Leukemia is a fatal cancer and has two main types: Acute and chronic. Each type has two more subtypes: Lymphoid and myeloid. Hence, in total, there are four subtypes of leukemia. This study proposes a new approach for diagnosis of all subtypes of leukemia from microscopic blood cell images using convolutional neural networks (CNN), which requires a large training data set. Therefore, we also investigated the effects of data augmentation for an increasing number of training samples synthetically. We used two publicly available leukemia data sources: ALL-IDB and ASH Image Bank. Next, we applied seven different image transformation techniques as data augmentation. We designed a CNN architecture capable of recognizing all subtypes of leukemia. Besides, we also explored other well-known machine learning algorithms such as naive Bayes, support vector machine, k-nearest neighbor, and decision tree. To evaluate our approach, we set up a set of experiments and used 5-fold cross-validation. The results we obtained from experiments showed that our CNN model performance has 88.25% and 81.74% accuracy, in leukemia versus healthy and multiclass classification of all subtypes, respectively. Finally, we also showed that the CNN model has a better performance than other wellknown machine learning algorithms.


Author(s):  
Du Chunqi ◽  
Shinobu Hasegawa

In computer vision and computer graphics, 3D reconstruction is the process of capturing real objects’ shapes and appearances. 3D models always can be constructed by active methods which use high-quality scanner equipment, or passive methods that learn from the dataset. However, both of these two methods only aimed to construct the 3D models, without showing what element affects the generation of 3D models. Therefore, the goal of this research is to apply deep learning to automatically generating 3D models, and finding the latent variables which affect the reconstructing process. The existing research GANs can be trained in little data with two networks called Generator and Discriminator, respectively. Generator can produce synthetic data, and Discriminator can discriminate between the generator’s output and real data. The existing research shows that InFoGAN can maximize the mutual information between latent variables and observation. In our approach, we will generate the 3D models based on InFoGAN and design two constraints, shape-constraint and parameters-constraint, respectively. Shape-constraint utilizes the data augmentation method to limit the synthetic data generated in the models’ profiles. At the same time, we also try to employ parameters-constraint to find the 3D models’ relationship corresponding to the latent variables. Furthermore, our approach will be a challenge in the architecture of generating 3D models built on InFoGAN. Finally, in the process of generation, we might discover the contribution of the latent variables influencing the 3D models to the whole network.


2021 ◽  
Vol 10 (2) ◽  
pp. 233-245
Author(s):  
Tanja Dorst ◽  
Yannick Robin ◽  
Sascha Eichstädt ◽  
Andreas Schütze ◽  
Tizian Schneider

Abstract. Process sensor data allow for not only the control of industrial processes but also an assessment of plant conditions to detect fault conditions and wear by using sensor fusion and machine learning (ML). A fundamental problem is the data quality, which is limited, inter alia, by time synchronization problems. To examine the influence of time synchronization within a distributed sensor system on the prediction performance, a test bed for end-of-line tests, lifetime prediction, and condition monitoring of electromechanical cylinders is considered. The test bed drives the cylinder in a periodic cycle at maximum load, a 1 s period at constant drive speed is used to predict the remaining useful lifetime (RUL). The various sensors for vibration, force, etc. integrated into the test bed are sampled at rates between 10 kHz and 1 MHz. The sensor data are used to train a classification ML model to predict the RUL with a resolution of 1 % based on feature extraction, feature selection, and linear discriminant analysis (LDA) projection. In this contribution, artificial time shifts of up to 50 ms between individual sensors' cycles are introduced, and their influence on the performance of the RUL prediction is investigated. While the ML model achieves good results if no time shifts are introduced, we observed that applying the model trained with unmodified data only to data sets with time shifts results in very poor performance of the RUL prediction even for small time shifts of 0.1 ms. To achieve an acceptable performance also for time-shifted data and thus achieve a more robust model for application, different approaches were investigated. One approach is based on a modified feature extraction approach excluding the phase values after Fourier transformation; a second is based on extending the training data set by including artificially time-shifted data. This latter approach is thus similar to data augmentation used to improve training of neural networks.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Suxia Cui ◽  
Yu Zhou ◽  
Yonghui Wang ◽  
Lujun Zhai

Recently, human being’s curiosity has been expanded from the land to the sky and the sea. Besides sending people to explore the ocean and outer space, robots are designed for some tasks dangerous for living creatures. Take the ocean exploration for an example. There are many projects or competitions on the design of Autonomous Underwater Vehicle (AUV) which attracted many interests. Authors of this article have learned the necessity of platform upgrade from a previous AUV design project, and would like to share the experience of one task extension in the area of fish detection. Because most of the embedded systems have been improved by fast growing computing and sensing technologies, which makes them possible to incorporate more and more complicated algorithms. In an AUV, after acquiring surrounding information from sensors, how to perceive and analyse corresponding information for better judgement is one of the challenges. The processing procedure can mimic human being’s learning routines. An advanced system with more computing power can facilitate deep learning feature, which exploit many neural network algorithms to simulate human brains. In this paper, a convolutional neural network (CNN) based fish detection method was proposed. The training data set was collected from the Gulf of Mexico by a digital camera. To fit into this unique need, three optimization approaches were applied to the CNN: data augmentation, network simplification, and training process speed up. Data augmentation transformation provided more learning samples; the network was simplified to accommodate the artificial neural network; the training process speed up is introduced to make the training process more time efficient. Experimental results showed that the proposed model is promising, and has the potential to be extended to other underwear objects.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pengcheng Li ◽  
Qikai Liu ◽  
Qikai Cheng ◽  
Wei Lu

Purpose This paper aims to identify data set entities in scientific literature. To address poor recognition caused by a lack of training corpora in existing studies, a distant supervised learning-based approach is proposed to identify data set entities automatically from large-scale scientific literature in an open domain. Design/methodology/approach Firstly, the authors use a dictionary combined with a bootstrapping strategy to create a labelled corpus to apply supervised learning. Secondly, a bidirectional encoder representation from transformers (BERT)-based neural model was applied to identify data set entities in the scientific literature automatically. Finally, two data augmentation techniques, entity replacement and entity masking, were introduced to enhance the model generalisability and improve the recognition of data set entities. Findings In the absence of training data, the proposed method can effectively identify data set entities in large-scale scientific papers. The BERT-based vectorised representation and data augmentation techniques enable significant improvements in the generality and robustness of named entity recognition models, especially in long-tailed data set entity recognition. Originality/value This paper provides a practical research method for automatically recognising data set entities in scientific literature. To the best of the authors’ knowledge, this is the first attempt to apply distant learning to the study of data set entity recognition. The authors introduce a robust vectorised representation and two data augmentation strategies (entity replacement and entity masking) to address the problem inherent in distant supervised learning methods, which the existing research has mostly ignored. The experimental results demonstrate that our approach effectively improves the recognition of data set entities, especially long-tailed data set entities.


Sign in / Sign up

Export Citation Format

Share Document