scholarly journals RIDF: A ROBUST ROTATION-INVARIANT DESCRIPTOR FOR 3D POINT CLOUD REGISTRATION IN THE FREQUENCY DOMAIN

Author(s):  
R. Huang ◽  
W. Yao ◽  
Z. Ye ◽  
Y. Xu ◽  
U. Stilla

Abstract. Registration of point clouds is a fundamental problem in the community of photogrammetry and 3D computer vision. Generally, point cloud registration consists of two steps: the search of correspondences and the estimation of transformation parameters. However, to find correspondences from point clouds, generating robust and discriminative features is of necessity. In this paper, we address the problem of extracting robust rotation-invariant features for fast coarse registration of point clouds under the assumption that the pairwise point clouds are transformed with rigid transformation. With a Fourier-based descriptor, point clouds represented by volumetric images can be mapped from the image to feature space. It is achieved by considering a gradient histogram as a continuous angular signal which can be well represented by the spherical harmonics. The rotation-invariance is established based on the Fourier-based analysis, in which high-frequency signals can be filtered out. This makes the extracted features robust to noises and outliers. Then, with the extracted features, pairwise correspondence can be found by the fast search. Finally, the transformation parameters can be estimated by fitting the rigid transformation model using the corresponding points and RANSAC algorithm. Experiments are conducted to prove the effectiveness of our proposed method in the task of point cloud registration. Regarding the experimental results of the point cloud registration using two TLS benchmark point cloud datasets, featuring with limited overlaps and uneven point densities and covering different urban scenes, our proposed method can achieve a fast coarse registration with rotation errors of less than 1 degree and translation errors of less than 1m.

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5778
Author(s):  
Baifan Chen ◽  
Hong Chen ◽  
Baojun Song ◽  
Grace Gong

Three-dimensional point cloud registration (PCReg) has a wide range of applications in computer vision, 3D reconstruction and medical fields. Although numerous advances have been achieved in the field of point cloud registration in recent years, large-scale rigid transformation is a problem that most algorithms still cannot effectively handle. To solve this problem, we propose a point cloud registration method based on learning and transform-invariant features (TIF-Reg). Our algorithm includes four modules, which are the transform-invariant feature extraction module, deep feature embedding module, corresponding point generation module and decoupled singular value decomposition (SVD) module. In the transform-invariant feature extraction module, we design TIF in SE(3) (which means the 3D rigid transformation space) which contains a triangular feature and local density feature for points. It fully exploits the transformation invariance of point clouds, making the algorithm highly robust to rigid transformation. The deep feature embedding module embeds TIF into a high-dimension space using a deep neural network, further improving the expression ability of features. The corresponding point cloud is generated using an attention mechanism in the corresponding point generation module, and the final transformation for registration is calculated in the decoupled SVD module. In an experiment, we first train and evaluate the TIF-Reg method on the ModelNet40 dataset. The results show that our method keeps the root mean squared error (RMSE) of rotation within 0.5∘ and the RMSE of translation error close to 0 m, even when the rotation is up to [−180∘, 180∘] or the translation is up to [−20 m, 20 m]. We also test the generalization of our method on the TUM3D dataset using the model trained on Modelnet40. The results show that our method’s errors are close to the experimental results on Modelnet40, which verifies the good generalization ability of our method. All experiments prove that the proposed method is superior to state-of-the-art PCReg algorithms in terms of accuracy and complexity.


Author(s):  
A. Walicka ◽  
N. Pfeifer ◽  
G. Jóźków ◽  
A. Borkowski

<p><strong>Abstract.</strong> Remote sensing techniques are an important tool in fluvial transport monitoring, since they allow for effective evaluation of the volume of transported material. Nevertheless, there is no methodology for automatic calculation of movement parameters of individual rocks. These parameters can be determined by point cloud registration. Hence, the goal of this study is to develop a robust algorithm for terrestrial laser scanning point cloud registration. The registration is based on Iterative Closest Point algorithm, which requires well established initial parameters of transformation. Thus, we propose to calculate the initial parameters based on key points representing the maximum of Gaussian curvature. For each key point the set of geometrical features is calculated. The key points are then matched between two point clouds as a nearest neighbor in feature domain. Different combinations of neighborhood sizes, feature subsets, metrics and number of nearest neighbors were tested to obtain the highest ratio between properly and improperly matched key points. Finally, RANSAC algorithm was used to calculate the initial transformation parameters between the point clouds and the ICP algorithm was used for calculation of final transformation parameters. The investigations carried out on sample point clouds representing rocks enabled the adjustment of parameters of the algorithm and showed that the Gaussian curvature can be used as a 3-dimentional key point detector for such objects. The proposed algorithm enabled to register point clouds with the mean distance between point clouds equal to 3&amp;thinsp;mm.</p>


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6999
Author(s):  
Huikai Liu ◽  
Yue Zhang ◽  
Linjian Lei ◽  
Hui Xie ◽  
Yan Li ◽  
...  

Rigid registration of 3D point clouds is the key technology in robotics and computer vision. Most commonly, the iterative closest point (ICP) and its variants are employed for this task. These methods assume that the closest point is the corresponding point and lead to sensitivity to the outlier and initial pose, while they have poor computational efficiency due to the closest point computation. Most implementations of the ICP algorithm attempt to deal with this issue by modifying correspondence or adding coarse registration. However, this leads to sacrificing the accuracy rate or adding the algorithm complexity. This paper proposes a hierarchical optimization approach that includes improved voxel filter and Multi-Scale Voxelized Generalized-ICP (MVGICP) for 3D point cloud registration. By combining traditional voxel sampling with point density, the outlier filtering and downsample are successfully realized. Through multi-scale iteration and avoiding closest point computation, MVGICP solves the local minimum problem and optimizes the operation efficiency. The experimental results demonstrate that the proposed algorithm is superior to the current algorithms in terms of outlier filtering and registration performance.


Author(s):  
Haobo Jiang ◽  
Jianjun Qian ◽  
Jin Xie ◽  
Jian Yang

Point cloud registration is a fundamental problem in 3D computer vision. In this paper, we cast point cloud registration into a planning problem in reinforcement learning, which can seek the transformation between the source and target point clouds through trial and error. By modeling the point cloud registration process as a Markov decision process (MDP), we develop a latent dynamic model of point clouds, consisting of a transformation network and evaluation network. The transformation network aims to predict the new transformed feature of the point cloud after performing a rigid transformation (i.e., action) on it while the evaluation network aims to predict the alignment precision between the transformed source point cloud and target point cloud as the reward signal. Once the dynamic model of the point cloud is trained, we employ the cross-entropy method (CEM) to iteratively update the planning policy by maximizing the rewards in the point cloud registration process. Thus, the optimal policy, i.e., the transformation between the source and target point clouds, can be obtained via gradually narrowing the search space of the transformation. Experimental results on ModelNet40 and 7Scene benchmark datasets demonstrate that our method can yield good registration performance in an unsupervised manner.


Author(s):  
Y. Xu ◽  
R. Boerner ◽  
W. Yao ◽  
L. Hoegner ◽  
U. Stilla

For obtaining a full coverage of 3D scans in a large-scale urban area, the registration between point clouds acquired via terrestrial laser scanning (TLS) is normally mandatory. However, due to the complex urban environment, the automatic registration of different scans is still a challenging problem. In this work, we propose an automatic marker free method for fast and coarse registration between point clouds using the geometric constrains of planar patches under a voxel structure. Our proposed method consists of four major steps: the voxelization of the point cloud, the approximation of planar patches, the matching of corresponding patches, and the estimation of transformation parameters. In the voxelization step, the point cloud of each scan is organized with a 3D voxel structure, by which the entire point cloud is partitioned into small individual patches. In the following step, we represent points of each voxel with the approximated plane function, and select those patches resembling planar surfaces. Afterwards, for matching the corresponding patches, a RANSAC-based strategy is applied. Among all the planar patches of a scan, we randomly select a planar patches set of three planar surfaces, in order to build a coordinate frame via their normal vectors and their intersection points. The transformation parameters between scans are calculated from these two coordinate frames. The planar patches set with its transformation parameters owning the largest number of coplanar patches are identified as the optimal candidate set for estimating the correct transformation parameters. The experimental results using TLS datasets of different scenes reveal that our proposed method can be both effective and efficient for the coarse registration task. Especially, for the fast orientation between scans, our proposed method can achieve a registration error of less than around 2 degrees using the testing datasets, and much more efficient than the classical baseline methods.


Author(s):  
R. Huang ◽  
Z. Ye ◽  
R. Boerner ◽  
W. Yao ◽  
Y. Xu ◽  
...  

<p><strong>Abstract.</strong> For conducting change detection using 3D scans of a construction site, the registration between point clouds at different acquisition times is normally necessary. However, due to the complexity of constructing areas, the automatic registration of temporal scans is a challenging problem. In this work, we propose a fast and maker-free method for coarse registration between point clouds by converting the 3D matching problem into a 2D correlation problem, taking the special properties of building structures into consideration. Our proposed method consists of two major steps: the conversion from 3D points to 2D image data and the estimation of transformation parameters between 2D images in the frequency domain. In the conversion step, the point cloud of each scan is projected into a 2D grey image, by which the ground footprint of the point cloud is obtained. In the following step, we represent the 2D image in frequency-domain and estimate the horizontal transformation parameters by using Fourier-Mellin transformation. A real application is performed to validate the feasibility and effectiveness of our workflow using photogrammetric point clouds of a construction site in two different acquisition time. Regarding the real application of coarse registration of point clouds, our proposed method can achieve a registration error of less than 1 degree and more efficient than the classical baseline methods for the fast orientation between scans.</p>


2019 ◽  
Vol 9 (16) ◽  
pp. 3273 ◽  
Author(s):  
Wen-Chung Chang ◽  
Van-Toan Pham

This paper develops a registration architecture for the purpose of estimating relative pose including the rotation and the translation of an object in terms of a model in 3-D space based on 3-D point clouds captured by a 3-D camera. Particularly, this paper addresses the time-consuming problem of 3-D point cloud registration which is essential for the closed-loop industrial automated assembly systems that demand fixed time for accurate pose estimation. Firstly, two different descriptors are developed in order to extract coarse and detailed features of these point cloud data sets for the purpose of creating training data sets according to diversified orientations. Secondly, in order to guarantee fast pose estimation in fixed time, a seemingly novel registration architecture by employing two consecutive convolutional neural network (CNN) models is proposed. After training, the proposed CNN architecture can estimate the rotation between the model point cloud and a data point cloud, followed by the translation estimation based on computing average values. By covering a smaller range of uncertainty of the orientation compared with a full range of uncertainty covered by the first CNN model, the second CNN model can precisely estimate the orientation of the 3-D point cloud. Finally, the performance of the algorithm proposed in this paper has been validated by experiments in comparison with baseline methods. Based on these results, the proposed algorithm significantly reduces the estimation time while maintaining high precision.


2019 ◽  
Vol 12 (1) ◽  
pp. 112 ◽  
Author(s):  
Dong Lin ◽  
Lutz Bannehr ◽  
Christoph Ulrich ◽  
Hans-Gerd Maas

Thermal imagery is widely used in various fields of remote sensing. In this study, a novel processing scheme is developed to process the data acquired by the oblique airborne photogrammetric system AOS-Tx8 consisting of four thermal cameras and four RGB cameras with the goal of large-scale area thermal attribute mapping. In order to merge 3D RGB data and 3D thermal data, registration is conducted in four steps: First, thermal and RGB point clouds are generated independently by applying structure from motion (SfM) photogrammetry to both the thermal and RGB imagery. Next, a coarse point cloud registration is performed by the support of georeferencing data (global positioning system, GPS). Subsequently, a fine point cloud registration is conducted by octree-based iterative closest point (ICP). Finally, three different texture mapping strategies are compared. Experimental results showed that the global image pose refinement outperforms the other two strategies at registration accuracy between thermal imagery and RGB point cloud. Potential building thermal leakages in large areas can be fast detected in the generated texture mapping results. Furthermore, a combination of the proposed workflow and the oblique airborne system allows for a detailed thermal analysis of building roofs and facades.


2019 ◽  
Vol 12 (1) ◽  
pp. 61
Author(s):  
Miloš Prokop ◽  
Salman Ahmed Shaikh ◽  
Kyoung-Sook Kim

Modern robotic exploratory strategies assume multi-agent cooperation that raises a need for an effective exchange of acquired scans of the environment with the absence of a reliable global positioning system. In such situations, agents compare the scans of the outside world to determine if they overlap in some region, and if they do so, they determine the right matching between them. The process of matching multiple point-cloud scans is called point-cloud registration. Using the existing point-cloud registration approaches, a good match between any two-point-clouds is achieved if and only if there exists a large overlap between them, however, this limits the advantage of using multiple robots, for instance, for time-effective 3D mapping. Hence, a point-cloud registration approach is highly desirable if it can work with low overlapping scans. This work proposes a novel solution for the point-cloud registration problem with a very low overlapping area between the two scans. In doing so, no initial relative positions of the point-clouds are assumed. Most of the state-of-the-art point-cloud registration approaches iteratively match keypoints in the scans, which is computationally expensive. In contrast to the traditional approaches, a more efficient line-features-based point-cloud registration approach is proposed in this work. This approach, besides reducing the computational cost, avoids the problem of high false-positive rate of existing keypoint detection algorithms, which becomes especially significant in low overlapping point-cloud registration. The effectiveness of the proposed approach is demonstrated with the help of experiments.


Sign in / Sign up

Export Citation Format

Share Document