scholarly journals ESTIMATION OF INSULATOR CONTAMINATIONS BY MEANS OF REMOTE SENSING TECHNIQUE

Author(s):  
Ge Han ◽  
Wei Gong ◽  
Xiaohui Cui ◽  
Miao Zhang ◽  
Jun Chen

The accurate estimation of deposits adhering on insulators is critical to prevent pollution flashovers which cause huge costs worldwide. The traditional evaluation method of insulator contaminations (IC) is based sparse manual in-situ measurements, resulting in insufficient spatial representativeness and poor timeliness. Filling that gap, we proposed a novel evaluation framework of IC based on remote sensing and data mining. Varieties of products derived from satellite data, such as aerosol optical depth (AOD), digital elevation model (DEM), land use and land cover and normalized difference vegetation index were obtained to estimate the severity of IC along with the necessary field investigation inventory (pollution sources, ambient atmosphere and meteorological data). Rough set theory was utilized to minimize input sets under the prerequisite that the resultant set is equivalent to the full sets in terms of the decision ability to distinguish severity levels of IC. We found that AOD, the strength of pollution source and the precipitation are the top 3 decisive factors to estimate insulator contaminations. On that basis, different classification algorithm such as mahalanobis minimum distance, support vector machine (SVM) and maximum likelihood method were utilized to estimate severity levels of IC. 10-fold cross-validation was carried out to evaluate the performances of different methods. SVM yielded the best overall accuracy among three algorithms. An overall accuracy of more than 70% was witnessed, suggesting a promising application of remote sensing in power maintenance. To our knowledge, this is the first trial to introduce remote sensing and relevant data analysis technique into the estimation of electrical insulator contaminations.

Author(s):  
Ge Han ◽  
Wei Gong ◽  
Xiaohui Cui ◽  
Miao Zhang ◽  
Jun Chen

The accurate estimation of deposits adhering on insulators is critical to prevent pollution flashovers which cause huge costs worldwide. The traditional evaluation method of insulator contaminations (IC) is based sparse manual in-situ measurements, resulting in insufficient spatial representativeness and poor timeliness. Filling that gap, we proposed a novel evaluation framework of IC based on remote sensing and data mining. Varieties of products derived from satellite data, such as aerosol optical depth (AOD), digital elevation model (DEM), land use and land cover and normalized difference vegetation index were obtained to estimate the severity of IC along with the necessary field investigation inventory (pollution sources, ambient atmosphere and meteorological data). Rough set theory was utilized to minimize input sets under the prerequisite that the resultant set is equivalent to the full sets in terms of the decision ability to distinguish severity levels of IC. We found that AOD, the strength of pollution source and the precipitation are the top 3 decisive factors to estimate insulator contaminations. On that basis, different classification algorithm such as mahalanobis minimum distance, support vector machine (SVM) and maximum likelihood method were utilized to estimate severity levels of IC. 10-fold cross-validation was carried out to evaluate the performances of different methods. SVM yielded the best overall accuracy among three algorithms. An overall accuracy of more than 70% was witnessed, suggesting a promising application of remote sensing in power maintenance. To our knowledge, this is the first trial to introduce remote sensing and relevant data analysis technique into the estimation of electrical insulator contaminations.


2018 ◽  
Vol 7 (11) ◽  
pp. 418 ◽  
Author(s):  
Tian Jiang ◽  
Xiangnan Liu ◽  
Ling Wu

Accurate and timely information about rice planting areas is essential for crop yield estimation, global climate change and agricultural resource management. In this study, we present a novel pixel-level classification approach that uses convolutional neural network (CNN) model to extract the features of enhanced vegetation index (EVI) time series curve for classification. The goal is to explore the practicability of deep learning techniques for rice recognition in complex landscape regions, where rice is easily confused with the surroundings, by using mid-resolution remote sensing images. A transfer learning strategy is utilized to fine tune a pre-trained CNN model and obtain the temporal features of the EVI curve. Support vector machine (SVM), a traditional machine learning approach, is also implemented in the experiment. Finally, we evaluate the accuracy of the two models. Results show that our model performs better than SVM, with the overall accuracies being 93.60% and 91.05%, respectively. Therefore, this technique is appropriate for estimating rice planting areas in southern China on the basis of a pre-trained CNN model by using time series data. And more opportunity and potential can be found for crop classification by remote sensing and deep learning technique in the future study.


2020 ◽  
Vol 12 (22) ◽  
pp. 3761
Author(s):  
Hengqian Zhao ◽  
Chenghai Yang ◽  
Wei Guo ◽  
Lifu Zhang ◽  
Dongyan Zhang

The authors wish to make the following correction to this paper [...]


2020 ◽  
Vol 12 (11) ◽  
pp. 1814
Author(s):  
Phamchimai Phan ◽  
Nengcheng Chen ◽  
Lei Xu ◽  
Zeqiang Chen

Tea is a cash crop that improves the quality of life for people in the Tanuyen District of Laichau Province, Vietnam. Tea yield, however, has stagnated in recent years, due to changes in temperature, precipitation, the age of the tea bushes, and diseases. Developing an approach for monitoring tea bushes by remote sensing and Geographic Information Systems (GIS) might be a way to alleviate this problem. Using multi-temporal remote sensing data, the paper details an investigation of the changes in tea health and yield forecasting through the normalized difference vegetation index (NDVI). In this study, we used NDVI as a support tool to demonstrate the temporal and spatial changes in NDVI through the extract tea NDVI value and calculate the mean NDVI value. The results of the study showed that the minimum NDVI value was 0.42 during January 2013 and February 2015 and 2016. The maximum NDVI value was in August 2015 and June 2017. We indicate that the linear relationship between NDVI value and mean temperature was strong with R 2 = 0.79 Our results confirm that the combination of meteorological data and NDVI data can achieve a high performance of yield prediction. Three models to predict tea yield were conducted: support vector machine (SVM), random forest (RF), and the traditional linear regression model (TLRM). For period 2009 to 2018, the prediction tea yield by the RF model was the best with a R 2 = 0.73 , by SVM it was 0.66, and 0.57 with the TLRM. Three evaluation indicators were used to consider accuracy: the coefficient of determination ( R 2 ), root-mean-square error (RMSE), and percentage error of tea yield (PETY). The highest accuracy for the three models was in 2015 with a R 2 ≥ 0.87, RMSE < 50 kg/ha, and PETY less 3% error. In the other years, the prediction accuracy was higher in the SVM and RF models. Meanwhile, the RF algorithm was better than PETY (≤10%) and the root mean square error for this algorithm was significantly less (≤80 kg/ha). RMSE and PETY showed relatively good values in the TLRM model with a RMSE from 80 to 100 kg/ha and a PETY from 8 to 15%.


Author(s):  
V. P. Yadav ◽  
R. Prasad ◽  
R. Bala ◽  
A. K. Vishwakarma ◽  
S. A. Yadav ◽  
...  

Abstract. The leaf area index (LAI) is one of key variable of crops which plays important role in agriculture, ecology and climate change for global circulation models to compute energy and water fluxes. In the recent research era, the machine-learning algorithms have provided accurate computational approaches for the estimation of crops biophysical parameters using remotely sensed data. The three machine-learning algorithms, random forest regression (RFR), support vector regression (SVR) and artificial neural network regression (ANNR) were used to estimate the LAI for crops in the present study. The three different dates of Landsat-8 satellite images were used during January 2017 – March 2017 at different crops growth conditions in Varanasi district, India. The sampling regions were fully covered by major Rabi season crops like wheat, barley and mustard etc. In total pooled data, 60% samples were taken for the training of the algorithms and rest 40% samples were taken as testing and validation of the machinelearning regressions algorithms. The highest sensitivity of normalized difference vegetation index (NDVI) with LAI was found using RFR algorithms (R2 = 0.884, RMSE = 0.404) as compared to SVR (R2 = 0.847, RMSE = 0.478) and ANNR (R2 = 0.829, RMSE = 0.404). Therefore, RFR algorithms can be used for accurate estimation of LAI for crops using satellite data.


2020 ◽  
Author(s):  
Lei Wang ◽  
Haoran Sun ◽  
Wenjun Li ◽  
Liang Zhou

&lt;p&gt;Crop planting structure is of great significance to the quantitative management of agricultural water and the accurate estimation of crop yield. With the increasing spatial and temporal resolution of remote sensing optical and SAR(Synthetic Aperture Radar) images, &amp;#160;efficient crop mapping in large area becomes possible and the accuracy is improved. In this study, Qingyijiang Irrigation District in southwest of China is selected for crop identification methods comparison, which has heterogeneous terrain and complex crop structure . Multi-temporal optical (Sentinel-2) and SAR (Sentinel-1) data were used to calculate NDVI and backscattering coefficient as the main classification indexes. The multi-spectral and SAR data showed significant change in different stages of the whole crop growth period and varied with different crop types. Spatial distribution and texture analysis was also made. Classification using different combinations of indexes were performed using neural network, support vector machine and random forest method. The results showed that, the use of multi-temporal optical data and SAR data in the key growing periods of main crops can both provide satisfactory classification accuracy. The overall classification accuracy was greater than 82% and Kappa coefficient was greater than 0.8. SAR data has high accuracy and much potential in rice identification. However optical data had more accuracy in upland crops classification. In addition, the classification accuracy can be effectively improved by combination of classification indexes from optical and SAR data, the overall accuracy was up to 91.47%. The random forest method was superior to the other two methods in terms of the overall accuracy and the kappa coefficient.&lt;/p&gt;


2019 ◽  
Vol 11 (16) ◽  
pp. 4347 ◽  
Author(s):  
Jindong Wu

Urban trees provide various important ecological services, the quantification of which is vital to sustainable urban development and requires accurate estimation of tree biomass. A limited number of allometric biomass equations, however, have been developed for urban species due to the prohibitive cost. Remote sensing has provided cost-effective means for estimating urban forest biomass, although the propagation of error in the estimation process is not well understood. This study aimed to offer a baseline assessment of the feasibility of estimating urban tree biomass with remote sensing-based general equations applicable to broad taxonomic groups by conducting a large urban tree inventory on a university campus. The biomasses of 191 trees of seven species from the inventory, separated into two categories (i.e., evergreen and deciduous), were calculated exclusively with urban-based species-specific allometric equations. WorldView-2 satellite imagery data were acquired to retrieve normalized difference vegetation index (NDVI) values at the location, crown, and stand levels. The results indicated that biomass correlated with NDVI in varying forms and degrees. The general equations at the crown level yielded the most accurate biomass estimates, while the location-level estimates were the least accurate. Crown-level spectral responses provided adequate information for delivering spatially explicit biomass estimation.


2021 ◽  
Vol 13 (2) ◽  
pp. 243
Author(s):  
Amal Chakhar ◽  
David Hernández-López ◽  
Rocío Ballesteros ◽  
Miguel A. Moreno

The availability of an unprecedented amount of open remote sensing data, such as Sentinel-1 and -2 data within the Copernicus program, has boosted the idea of combining the use of optical and radar data to improve the accuracy of agricultural applications such as crop classification. Sentinel-1’s Synthetic Aperture Radar (SAR) provides co- and cross-polarized backscatter, which offers the opportunity to monitor agricultural crops using radar at high spatial and temporal resolution. In this study, we assessed the potential of integrating Sentinel-1 information (VV and VH backscatter and their ratio VH/VV with Sentinel-2A data (NDVI) to perform crop classification and to define which are the most important input data that provide the most accurate classification results. Further, we examined the temporal dynamics of remote sensing data for cereal, horticultural, and industrial crops, perennials, deciduous trees, and legumes. To select the best SAR input feature, we tried two approaches, one based on classification with only SAR features and one based on integrating SAR with optical data. In total, nine scenarios were tested. Furthermore, we evaluated the performance of 22 nonparametric classifiers on which most of these algorithms had not been tested before with SAR data. The results revealed that the best performing scenario was the one integrating VH and VV with normalized difference vegetation index (NDVI) and cubic support vector machine (SVM) (the kernel function of the classifier is cubic) as the classifier with the highest accuracy among all those tested.


2021 ◽  
Vol 13 (19) ◽  
pp. 3838
Author(s):  
Yan Liu ◽  
Sha Zhang ◽  
Jiahua Zhang ◽  
Lili Tang ◽  
Yun Bai

Accurate estimates of evapotranspiration (ET) over croplands on a regional scale can provide useful information for agricultural management. The hybrid ET model that combines the physical framework, namely the Penman-Monteith equation and machine learning (ML) algorithms, have proven to be effective in ET estimates. However, few studies compared the performances in estimating ET between multiple hybrid model versions using different ML algorithms. In this study, we constructed six different hybrid ET models based on six classical ML algorithms, namely the K nearest neighbor algorithm, random forest, support vector machine, extreme gradient boosting algorithm, artificial neural network (ANN) and long short-term memory (LSTM), using observed data of 17 eddy covariance flux sites of cropland over the globe. Each hybrid model was assessed to estimate ET with ten different input data combinations. In each hybrid model, the ML algorithm was used to model the stomatal conductance (Gs), and then ET was estimated using the Penman-Monteith equation, along with the ML-based Gs. The results showed that all hybrid models can reasonably reproduce ET of cropland with the models using two or more remote sensing (RS) factors. The results also showed that although including RS factors can remarkably contribute to improving ET estimates, hybrid models except for LSTM using three or more RS factors were only marginally better than those using two RS factors. We also evidenced that the ANN-based model exhibits the optimal performance among all ML-based models in modeling daily ET, as indicated by the lower root-mean-square error (RMSE, 18.67–21.23 W m−2) and higher correlations coefficient (r, 0.90–0.94). ANN are more suitable for modeling Gs as compared to other ML algorithms under investigation, being able to provide methodological support for accurate estimation of cropland ET on a regional scale.


Author(s):  
M. Ustuner ◽  
F. B. Sanli ◽  
S. Abdikan ◽  
M. T. Esetlili ◽  
Y. Kurucu

Cutting-edge remote sensing technology has a significant role for managing the natural resources as well as the any other applications about the earth observation. Crop monitoring is the one of these applications since remote sensing provides us accurate, up-to-date and cost-effective information about the crop types at the different temporal and spatial resolution. In this study, the potential use of three different vegetation indices of RapidEye imagery on crop type classification as well as the effect of each indices on classification accuracy were investigated. The Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) are the three vegetation indices used in this study since all of these incorporated the near-infrared (NIR) band. RapidEye imagery is highly demanded and preferred for agricultural and forestry applications since it has red-edge and NIR bands. The study area is located in Aegean region of Turkey. Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Original bands of RapidEye imagery were excluded and classification was performed with only three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 87, 46 % was obtained using three vegetation indices. This obtained classification accuracy is higher than the classification accuracy of any dual-combination of these vegetation indices. Results demonstrate that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the RapidEye imagery can get satisfactory results of classification accuracy without original bands.


Sign in / Sign up

Export Citation Format

Share Document