scholarly journals DATA QUALITY IN REMOTE SENSING

Author(s):  
C. Batini ◽  
T. Blaschke ◽  
S. Lang ◽  
F. Albrecht ◽  
H. M. Abdulmutalib ◽  
...  

The issue of data quality (DQ) is of growing importance in Remote Sensing (RS), due to the widespread use of digital services (incl. apps) that exploit remote sensing data. In this position paper a body of experts from the ISPRS Intercommission working group III/IVb “DQ” identifies, categorises and reasons about issues that are considered as crucial for a RS research and application agenda. This ISPRS initiative ensures to build on earlier work by other organisations such as IEEE, CEOS or GEO, in particular on the meritorious work of the Quality Assurance Framework for Earth Observation (QA4EO) which was established and endorsed by the Committee on Earth Observation Satellites (CEOS) but aims to broaden the view by including experts from computer science and particularly database science. The main activities and outcomes include: providing a taxonomy of DQ dimensions in the RS domain, achieving a global approach to DQ for heterogeneous-format RS data sets, investigate DQ dimensions in use, conceive a methodology for managing cost effective solutions on DQ in RS initiatives, and to address future challenges on RS DQ dimensions arising in the new era of the big Earth data.

Author(s):  
Guy Serbin ◽  
Stuart Green

Many remote sensing analytical data products are most useful when they are in an appropriate regional or national projection, rather than globally based projections like Universal Transverse Mercator (UTM) or geographic coordinates, i.e., latitude and longitude. Furthermore, leaving data in the global systems can create problems, either due to misprojection of imagery because of UTM zone boundaries, or because said projections are not optimised for local use. We developed the open-source Irish Earth Observation (IEO) Python module to maintain a local remote sensing data library for Ireland. This pure Python module, in conjunction with the IEOtools Python scripts, utilises the Geospatial Data Abstraction Library (GDAL) for its geoprocessing functionality. At present, the module supports only Landsat TM/ETM+/OLI/TIRS data that have been corrected to surface reflectance using the USGS/ESPA LEDAPS/ LaSRC Collection 1 architecture. This module and the IEOtools catalogue available Landsat data from the USGS/EROS archive, and includes functions for the importation of imagery into a defined local projection and calculation of cloud-free vegetation indices. While this module is distributed with default values and data for Ireland, it can be adapted for other regions with simple modifications to the configuration files and geospatial data sets.


2021 ◽  
Vol 13 (3) ◽  
pp. 440
Author(s):  
Haiming Zhang ◽  
Mingchang Wang ◽  
Fengyan Wang ◽  
Guodong Yang ◽  
Ying Zhang ◽  
...  

Building Change Detection (BCD) is one of the core issues in earth observation and has received extensive attention in recent years. With the rapid development of earth observation technology, the data source of remote sensing change detection is continuously enriched, which provides the possibility to describe the spatial details of the ground objects more finely and to characterize the ground objects with multiple perspectives and levels. However, due to the different physical mechanisms of multi-source remote sensing data, BCD based on heterogeneous data is a challenge. Previous studies mostly focused on the BCD of homogeneous remote sensing data, while the use of multi-source remote sensing data and considering multiple features to conduct 2D and 3D BCD research is sporadic. In this article, we propose a novel and general squeeze-and-excitation W-Net, which is developed from U-Net and SE-Net. Its unique advantage is that it can not only be used for BCD of homogeneous and heterogeneous remote sensing data respectively but also can input both homogeneous and heterogeneous remote sensing data for 2D or 3D BCD by relying on its bidirectional symmetric end-to-end network architecture. Moreover, from a unique perspective, we use image features that are stable in performance and less affected by radiation differences and temporal changes. We innovatively introduced the squeeze-and-excitation module to explicitly model the interdependence between feature channels so that the response between the feature channels is adaptively recalibrated to improve the information mining ability and detection accuracy of the model. As far as we know, this is the first proposed network architecture that can simultaneously use multi-source and multi-feature remote sensing data for 2D and 3D BCD. The experimental results in two 2D data sets and two challenging 3D data sets demonstrate that the promising performances of the squeeze-and-excitation W-Net outperform several traditional and state-of-the-art approaches. Moreover, both visual and quantitative analyses of the experimental results demonstrate competitive performance in the proposed network. This demonstrates that the proposed network and method are practical, physically justified, and have great potential application value in large-scale 2D and 3D BCD and qualitative and quantitative research.


2017 ◽  
Vol 21 (9) ◽  
pp. 4747-4765 ◽  
Author(s):  
Clara Linés ◽  
Micha Werner ◽  
Wim Bastiaanssen

Abstract. The implementation of drought management plans contributes to reduce the wide range of adverse impacts caused by water shortage. A crucial element of the development of drought management plans is the selection of appropriate indicators and their associated thresholds to detect drought events and monitor the evolution. Drought indicators should be able to detect emerging drought processes that will lead to impacts with sufficient anticipation to allow measures to be undertaken effectively. However, in the selection of appropriate drought indicators, the connection to the final impacts is often disregarded. This paper explores the utility of remotely sensed data sets to detect early stages of drought at the river basin scale and determine how much time can be gained to inform operational land and water management practices. Six different remote sensing data sets with different spectral origins and measurement frequencies are considered, complemented by a group of classical in situ hydrologic indicators. Their predictive power to detect past drought events is tested in the Ebro Basin. Qualitative (binary information based on media records) and quantitative (crop yields) data of drought events and impacts spanning a period of 12 years are used as a benchmark in the analysis. Results show that early signs of drought impacts can be detected up to 6 months before impacts are reported in newspapers, with the best correlation–anticipation relationships for the standard precipitation index (SPI), the normalised difference vegetation index (NDVI) and evapotranspiration (ET). Soil moisture (SM) and land surface temperature (LST) offer also good anticipation but with weaker correlations, while gross primary production (GPP) presents moderate positive correlations only for some of the rain-fed areas. Although classical hydrological information from water levels and water flows provided better anticipation than remote sensing indicators in most of the areas, correlations were found to be weaker. The indicators show a consistent behaviour with respect to the different levels of crop yield in rain-fed areas among the analysed years, with SPI, NDVI and ET providing again the stronger correlations. Overall, the results confirm remote sensing products' ability to anticipate reported drought impacts and therefore appear as a useful source of information to support drought management decisions.


2021 ◽  
Author(s):  
Luz Karime Atencia ◽  
María Gómez del Campo ◽  
Gema Camacho ◽  
Antonio Hueso ◽  
Ana M. Tarquis

<p>Olive is the main fruit tree in Spain representing 50% of the fruit trees surface, around 2,751,255 ha. Due to its adaptation to arid conditions and the scarcity of water, regulated deficit irrigation (RDI) strategy is normally applied in traditional olive orchards and recently to high density orchards. The application of RDI is one of the most important technique used in the olive hedgerow orchard. An investigation of the detection of water stress in nonhomogeneous olive tree canopies such as orchards using remote sensing imagery is presented.</p><p>In 2018 and 2019 seasons, data on stem water potential were collected to characterize tree water state in a hedgerow olive orchard cv. Arbequina located in Chozas de Canales (Toledo). Close to the measurement’s dates, remote sensing images with spectral and thermal sensors were acquired. Several vegetation indexes (VI) using both or one type of sensors were estimated from the areas selected that correspond to the olive crown avoiding the canopy shadows.</p><p>Nonparametric statistical tests between the VIs and the stem water potential were carried out to reveal the most significant correlation. The results will be discussing in the context of robustness and sensitivity between both data sets at different phenological olive state.</p><p><strong>ACKNOWLODGEMENTS</strong></p><p>Financial support provided by the Spanish Research Agency co-financed with European Union FEDER funds (AEI/FEDER, UE, AGL2016-77282-C3-2R project) and Comunidad de Madrid through calls for grants for the completion of Industrial Doctorates, is greatly appreciated.</p>


Eos ◽  
2017 ◽  
Author(s):  
Zhong Liu ◽  
James Acker

Using satellite remote sensing data sets can be a daunting task. Giovanni, a Web-based tool, facilitates access, visualization, and exploration for many of NASA’s Earth science data sets.


2020 ◽  
Vol 12 (14) ◽  
pp. 2208 ◽  
Author(s):  
Stanisław Szombara ◽  
Paulina Lewińska ◽  
Anna Żądło ◽  
Marta Róg ◽  
Kamil Maciuk

Analyses of riverbed shape evolution are crucial for environmental protection and local water management. For narrow rivers located in forested, mountain areas, it is difficult to use remote sensing data used for large river regions. We performed a study of the Prądnik River, located in the Ojców National Park (ONP), Poland. A multitemporal analysis of various data sets was performed. Light detection and ranging (LiDAR)-based data and orthophotomaps were compared with classical survey methods, and 78 cross-sectional profiles were done via GNSS and tachymetry. In order to add an extra time step, the old maps of this region were gathered, and their content was compared with contemporary data. The analysis of remote sensing data suggests that they do not provide sufficient information on the state and changes of riverbanks, river course or river depth. LiDAR data sets do not show river bottoms, and, due to plant life, do not document riverbanks. The orthophotomaps, due to tree coverage and shades, cannot be used for tracking the whole river course. The quality of old maps allows only for general shape analysis over time. This paper shows that traditional survey methods provide sufficient accuracy for such analysis, and the resulted cross-sectional profiles can and should be used to validate other, remote sensing, data sets. We diagnosed problems with the inventory and monitoring of such objects and proposed methods to refine the data acquisition.


Most systems reliant on advanced technology present a familiar dilemma: the system designer does not know what the customer wants, while the customer does not understand the technology well enough to know what is possible. Although Earth observation satellite systems ought ideally to be designed for all customer needs, this is impossible for several reasons. Not least of these is the difficulty of identifying at the outset all, or even most, of the possible customers. This circumstance makes the creation of Earth observation systems somewhat speculative and imposes particular constraints on the subsystems for processing and use of the data. This paper discusses the technical and institutional aspects of processing and dissemination of data from remote-sensing satellites for the benefit of the user.


Sign in / Sign up

Export Citation Format

Share Document