scholarly journals LAND COVER MONITORING OF LAGUNA LAKE WATERSHED USING MODIS NDVI DATA

Author(s):  
J. M. Medina ◽  
A. C. Blanco ◽  
C. G. Candido

Abstract. Land use and land cover monitoring is an important component in the management of Laguna Lake watershed due to its impacts on the lake’s water quality. Due to limitations caused by cloud cover, satellite systems with limited revisit capability fail to provide sufficient data to more effectively monitor the land surface. Normalized difference vegetation index (NDVI) derived from MODIS image data were used to generate land cover maps for the years 2001, 2005, 2009, 2013, and 2017. These were produced by classifying ISODATA classes using annual NDVI profiles, which resulted in land cover classes, namely, agricultural land, built-up, forest, rangeland, water, and wetland. The resulting maps were post-processed using multi-variate alteration detection (MAD), resulting in multi-temporal land cover maps with improved overall accuracies and kappa coefficients that indicate moderate agreement with ground truth data. Spatiotemporal hot spot analysis was also performed using NDVI data from 2001 to 2017 to identify vegetation hot spot areas, where clustering of low NDVI values were observed over the years. Results showed an increasing trend in built-up areas accompanied by decreasing trends in water and wetland areas, indicating impacts caused by land reclamation and expansion of residential subdivisions near the lakeshore. The decrease in total vegetation area from 2001 to 2017 could be attributed to conversion of land to built-up surface. Vegetated areas in identified hot spots decreased from 41% in 2001 to 19% in 2017. This suggests that vegetation cover in these hot spots was converted to non-vegetated surface during the time period studied.

Author(s):  
Georgiana Grigoraș ◽  
Bogdan Urițescu

Abstract The aim of the study is to find the relationship between the land surface temperature and air temperature and to determine the hot spots in the urban area of Bucharest, the capital of Romania. The analysis was based on images from both moderate-resolution imaging spectroradiometer (MODIS), located on both Terra and Aqua platforms, as well as on data recorded by the four automatic weather stations existing in the endowment of The National Air Quality Monitoring Network, from the summer of 2017. Correlation coefficients between land surface temperature and air temperature were higher at night (0.8-0.87) and slightly lower during the day (0.71-0.77). After the validation of satellite data with in-situ temperature measurements, the hot spots in the metropolitan area of Bucharest were identified using Getis-Ord spatial statistics analysis. It has been achieved that the “very hot” areas are grouped in the center of the city and along the main traffic streets and dense residential areas. During the day the "very hot spots” represent 33.2% of the city's surface, and during the night 31.6%. The area where the mentioned spots persist, falls into the "very hot spot" category both day and night, it represents 27.1% of the city’s surface and it is mainly represented by the city center.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1541
Author(s):  
Albert Nkwasa ◽  
Celray James Chawanda ◽  
Anna Msigwa ◽  
Hans C. Komakech ◽  
Boud Verbeiren ◽  
...  

In SWAT and SWAT+ models, the variations in hydrological processes are represented by Hydrological Response Units (HRUs). In the default models, agricultural land cover is represented by a single growing cycle. However, agricultural land use, especially in African cultivated catchments, typically consists of several cropping seasons, following dry and wet seasonal patterns, and are hence incorrectly represented in SWAT and SWAT+ default models. In this paper, we propose a procedure to incorporate agricultural seasonal land-use dynamics by (1) mapping land-use trajectories instead of static land-cover maps and (2) linking these trajectories to agricultural management settings. This approach was tested in SWAT and SWAT+ models of Usa catchment in Tanzania that is intensively cultivated by implementing dominant dynamic trajectories. Our results were evaluated with remote-sensing observations for Leaf Area Index (LAI), which showed that a single growing cycle did not well represent vegetation dynamics. A better agreement was obtained after implementing seasonal land-use dynamics for cultivated HRUs. It was concluded that the representation of seasonal land-use dynamics through trajectory implementation can lead to improved temporal patterns of LAI in default models. The SWAT+ model had higher flexibility in representing agricultural practices, using decision tables, and by being able to represent mixed cropping cultivations.


2021 ◽  
Author(s):  
Rasha Abou Samra

Abstract Land surface temperature (LST) is a significant environmental variable that is appreciably influenced by land use /land cover changes. The main goal of this research was to quantify the impacts of land use/land cover change (LULC) from the drying of Toshka Lakes on LST by remote sensing and GIS techniques. Landsat series TM and OLI satellite images were used to estimate LST from 2001 to 2019. Automated Water Extraction Index (AWEI) was applied to extract water bodies from the research area. Optimized Soil-Adjusted Vegetation Index (OSAVI) was utilized to predict the reclaimed land in the Toshka region until 2019. The results indicated a decrease in the lakes by about 1517.79 km2 with an average increase in LST by about 25.02 °C between 2001 and 2019. It was observed that the dried areas of the lakes were converted to bare soil and are covered by salt crusts. The results indicated that the land use change was a significant driver for the increased LST. The mean annual LST increased considerably by 0.6 °C/y between 2001 and 2019. A strong negative correlation between LST and Toshka Lakes area (R-square = 0.98) estimated from regression analysis implied that Toshka Lakes drying considerably affected the microclimate of the study area. Severe drought conditions, soil degradation, and many environmental issues were predicted due to the rise of LST in the research area. There is an urgent need to develop favorable strategies for sustainable environmental management in the Toshka region.


2021 ◽  
Vol 20 (2) ◽  
pp. 1-19
Author(s):  
Tahmid Anam Chowdhury ◽  
◽  
Md. Saiful Islam ◽  

Urban developments in the cities of Bangladesh are causing the depletion of natural land covers over the past several decades. One of the significant implications of the developments is a change in Land Surface Temperature (LST). Through LST distribution in different Land Use Land Cover (LULC) and a statistical association among LST and biophysical indices, i.e., Urban Index (UI), Bare Soil Index (BI), Normalized Difference Builtup Index (NDBI), Normalized Difference Bareness Index (NDBaI), Normalized Difference Vegetation Index (NDVI), and Modified Normalized Difference Water Index (MNDWI), this paper studied the implications of LULC change on the LST in Mymensingh city. Landsat TM and OLI/TIRS satellite images were used to study LULC through the maximum likelihood classification method and LSTs for 1989, 2004, and 2019. The accuracy of LULC classifications was 84.50, 89.50, and 91.00 for three sampling years, respectively. From 1989 to 2019, the area and average LST of the built-up category has been increased by 24.99% and 7.6ºC, respectively. Compared to vegetation and water bodies, built-up and barren soil regions have a greater LST each year. A different machine learning method was applied to simulate LULC and LST in 2034. A remarkable change in both LULC and LST was found through this simulation. If the current changing rate of LULC continues, the built-up area will be 59.42% of the total area, and LST will be 30.05ºC on average in 2034. The LST in 2034 will be more than 29ºC and 31ºC in 59.64% and 23.55% areas of the city, respectively.


2012 ◽  
Vol 9 (11) ◽  
pp. 15937-16003 ◽  
Author(s):  
S. Metzger ◽  
W. Junkermann ◽  
M. Mauder ◽  
K. Butterbach-Bahl ◽  
B. Trancón y Widemann ◽  
...  

Abstract. The goal of this study is to characterize the sensible (H) and latent (LE) heat exchange for different land covers in the heterogeneous steppe landscape of the Xilin River Catchment, Inner Mongolia, China. Eddy-covariance flux measurements at 50–100 m above ground were conducted in July 2009 using a weight-shift microlight aircraft. Wavelet decomposition of the turbulence data enables a spatial discretization of 90 m of the flux measurements. For a total of 8446 flux observations during 12 flights, MODIS land surface temperature (LST) and enhanced vegetation index (EVI) in each flux footprint are determined. Boosted regression trees are then used to infer an environmental response function (ERF) between all flux observations (H, LE) and biophysical- (LST, EVI) and meteorological drivers. Numerical tests show that ERF predictions covering the entire Xilin River Catchment (&amp;approx; 3670 km2) are accurate to ≤ 18%. The predictions are then summarized for each land cover type, providing individual estimates of source strength (36 W m−2 < H < 364 W m−2, 46 W m−2 < LE < 425 W m−2) and spatial variability (11 W m−2 < σH < 169 W m−2, 14 W m−2 < σLE < 152 W m−2) to a precision of ≤ 5%. Lastly, ERF predictions of land cover specific Bowen ratios are compared between subsequent flights at different locations in the Xilin River Catchment. Agreement of the land cover specific Bowen ratios to within 12 ± 9% emphasizes the robustness of the presented approach. This study indicates the potential of ERFs for (i) extending airborne flux measurements to the catchment scale, (ii) assessing the spatial representativeness of long-term tower flux measurements, and (iii) designing, constraining and evaluating flux algorithms for remote sensing and numerical modelling applications.


2017 ◽  
Author(s):  
Lukas Baumbach ◽  
Jonatan F. Siegmund ◽  
Magdalena Mittermeier ◽  
Reik V. Donner

Abstract. Temperature is a key factor controlling plant growth and vitality in the temperate climates of the mid-latitudes like in vast parts of the European continent. Beyond the effect of average conditions, the timings and magnitudes of temperature extremes play a particularly crucial role, which needs to be better understood in the context of projected future rises in the frequency and/or intensity of such events. In this work, we employ event coincidence analysis (ECA) to quantify the likelihood of simultaneous occurrences of extremes in daytime land surface temperature anomalies and the normalized difference vegetation index (NDVI). We perform this analysis for entire Europe based upon remote sensing data, differentiating between three periods corresponding to different stages of plant development during the growing season. In addition, we analyze the typical elevation and land cover type of the regions showing significantly large event coincidences rates to identify the most severely affected vegetation types. Our results reveal distinct spatio-temporal impact patterns in terms of extraordinarily large co-occurrence rates between several combinations of temperature and NDVI extremes. Croplands are among the most frequently affected land cover types, while elevation is found to have only a minor effect on the spatial distribution of corresponding extreme weather impacts. These findings provide important insights into the vulnerability of European terrestrial ecosystems to extreme temperature events and demonstrate how event-based statistics like ECA can provide a valuable perspective on environmental nexuses.


2014 ◽  
Vol 18 (9) ◽  
pp. 3571-3590 ◽  
Author(s):  
J. P. Boisier ◽  
N. de Noblet-Ducoudré ◽  
P. Ciais

Abstract. Recent results from the LUCID model intercomparison project have revealed large discrepancies in the simulated evapotranspiration (ET) response to the historical land-use change. Distinct land-surface parameterizations are behind those discrepancies, but understanding those differences rely on evaluations using still very limited measurements. Model benchmarking studies with observed ET are required in order to reduce the current uncertainties in the impacts of land use in terrestrial water flows. Here we present new estimates of historical land-use-induced ET changes based on three observation-driven products of ET. These products are used to derive empirical models of ET as a function of land-cover properties and environmental variables. An ensemble of reconstructions of past ET changes are derived with the same set of land-cover maps used in LUCID, with which we obtain an average decrease in global terrestrial ET of 1260 ± 850 km3 yr−1 between the preindustrial period and the present-day. This estimate is larger in magnitude than the mean ET change simulated within LUCID with process-based models, and substantially weaker than other estimates based on observations. Although decreases in annual ET dominate in deforested regions, large summertime increases in ET are diagnosed over areas of large cropland expansion. The multiple ET reconstructions carried out here show a large spread that we attribute principally to the different land-cover maps adopted and to the crops' ET rates deduced from the various products assessed. We therefore conclude that the current uncertainties of past ET changes could be reduced efficiently with improved historical land-cover reconstructions and better estimates of cropland ET.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 608 ◽  
Author(s):  
Muhammad Mejbel Salih ◽  
Oday Zakariya Jasim ◽  
Khalid I. Hassoon ◽  
Aysar Jameel Abdalkadhum

This paper illustrates a proposed method for the retrieval of land surface temperature (LST) from the two thermal bands of the LANDSAT-8 data. LANDSAT-8, the latest satellite from Landsat series, launched on 11 February 2013, using LANDSAT-8 Operational Line Imager and Thermal Infrared Sensor (OLI & TIRS) satellite data. LANDSAT-8 medium spatial resolution multispectral imagery presents particular interest in extracting land cover, because of the fine spectral resolution, the radiometric quantization of 12 bits. In this search a trial has been made to estimate LST over Al-Hashimiya district, south of Babylon province, middle of Iraq. Two dates images acquired on 2nd &18th of March 2018 to retrieve LST and compare them with ground truth data from infrared thermometer camera (all the measurements contacted with target by using type-k thermocouple) at the same time of images capture. The results showed that the rivers had a higher LST which is different to the other land cover types, of less than 3.47 C ◦, and the LST different for vegetation and residential area were less than 0.4 C ◦ with correlation coefficient of the two bands 10 and 11 Rbnad10= 0.70, Rband11 = 0.89 respectively, for the imaged acquired on the 2nd of march 2018 and Rband10= 0.70 and Rband11 = 0.72 on the 18th of march 2018. These results confirm that the proposed approach is effective for the retrieval of LST from the LANDSAT-8 Thermal bands, and the IR thermometer camera data which is an effective way to validate and improve the performance of LST retrieval. Generally the results show that the closer measurement taken from the scene center time, a better quality to classify the land cover. The purpose of this study is to assess the use of LANDSAT-8 data to specify temperature differences in land cover and compare the relationship between land surface temperature and land cover types.   


2017 ◽  
Vol 14 (21) ◽  
pp. 4891-4903 ◽  
Author(s):  
Lukas Baumbach ◽  
Jonatan F. Siegmund ◽  
Magdalena Mittermeier ◽  
Reik V. Donner

Abstract. Temperature is a key factor controlling plant growth and vitality in the temperate climates of the mid-latitudes like in vast parts of the European continent. Beyond the effect of average conditions, the timings and magnitudes of temperature extremes play a particularly crucial role, which needs to be better understood in the context of projected future rises in the frequency and/or intensity of such events. In this work, we employ event coincidence analysis (ECA) to quantify the likelihood of simultaneous occurrences of extremes in daytime land surface temperature anomalies (LSTAD) and the normalized difference vegetation index (NDVI). We perform this analysis for entire Europe based upon remote sensing data, differentiating between three periods corresponding to different stages of plant development during the growing season. In addition, we analyze the typical elevation and land cover type of the regions showing significantly large event coincidences rates to identify the most severely affected vegetation types. Our results reveal distinct spatio-temporal impact patterns in terms of extraordinarily large co-occurrence rates between several combinations of temperature and NDVI extremes. Croplands are among the most frequently affected land cover types, while elevation is found to have only a minor effect on the spatial distribution of corresponding extreme weather impacts. These findings provide important insights into the vulnerability of European terrestrial ecosystems to extreme temperature events and demonstrate how event-based statistics like ECA can provide a valuable perspective on environmental nexuses.


2010 ◽  
Vol 14 (10) ◽  
pp. 2073-2084 ◽  
Author(s):  
F. Zabel ◽  
T. B. Hank ◽  
W. Mauser

Abstract. Regionalization of physical land surface models requires the supply of detailed land cover information. Numerous global and regional land cover maps already exist but generally, they do not resolve arable land into different crop types. However, arable land comprises a huge variety of different crops with characteristic phenological behaviour, demonstrated in this paper with Leaf Area Index (LAI) measurements exemplarily for maize and winter wheat. This affects the mass and energy fluxes on the land surface and thus its hydrology. The objective of this study is the generation of a land cover map for central Europe based on CORINE Land Cover (CLC) 2000, merged with CORINE Switzerland, but distinguishing different crop types. Accordingly, an approach was developed, subdividing the land cover class arable land into the regionally most relevant subclasses for central Europe using multiseasonal MERIS Normalized Difference Vegetation Index (NDVI) data. The satellite data were used for the separation of spring and summer crops due to their different phenological behaviour. Subsequently, the generated phenological classes were subdivided following statistical data from EUROSTAT. This database was analysed concerning the acreage of different crop types. The impact of the improved land use/cover map on evapotranspiration was modelled exemplarily for the Upper Danube catchment with the hydrological model PROMET. Simulations based on the newly developed land cover approach showed a more detailed evapotranspiration pattern compared to model results using the traditional CLC map, which is ignorant of most arable subdivisions. Due to the improved temporal behaviour and spatial allocation of evapotranspiration processes in the new land cover approach, the simulated water balance more closely matches the measured gauge.


Sign in / Sign up

Export Citation Format

Share Document