scholarly journals POSSIBILITIES OF THE JOINT USE OF OPTICAL AND RADAR DATA IN FLOOD SPACE MONITORING

Author(s):  
O. P. Arkhipkin ◽  
G. N. Sagatdinova

<p><strong>Abstract.</strong> The article gives a brief description of the system of space monitoring of high water and floods. Its main tasks are the operational dynamics of snow and ice cover melting and the passage of flood waters. The solution of these tasks is carried out in three levels corresponding to the low, medium and high resolution of remote sensing data. An important role in monitoring is given to radar data. This is due to the features of the radar survey: independence from weather conditions and time of day, regularity, good spatial resolution, the possibility of using polarimetric properties (including phase information). The use of radar data also provides additional information, including the allocation of wet soils, flooded vegetation and infrastructure. The presence of large time periods of repeated survey, interference (cloudiness, haze, noise, etc.), different spatial resolution necessitates a complex analysis of optical and radar data in flood space monitoring. Such analysis makes it possible to better observe the flood dynamics, more precisely identify of flooding zones and determine their structure. Features of radar survey (transparency of dry snow and change of reflected signal during snowmelt) allow using them to determine the beginning of snow melt and determine the degree of water content in it. Optical data are also used to determine the area and structure of the snow cover. Method of detecting the beginning of the snowmelt period consists in the comparison of the current radar image with a base image created as an average image from the winter images with dry snow.</p>

2019 ◽  
Vol 11 (7) ◽  
pp. 778 ◽  
Author(s):  
Aminov Javhar ◽  
Xi Chen ◽  
Anming Bao ◽  
Aminov Jamshed ◽  
Mamadjanov Yunus ◽  
...  

Lineament mapping, which is an important part of any structural geological investigation, is made more efficient and easier by the availability of optical as well as radar remote sensing data, such as Landsat and Sentinel with medium and high spatial resolutions. However, the results from these multi-resolution data vary due to their difference in spatial resolution and sensitivity to soil occupation. The accuracy and quality of extracted lineaments depend strongly on the spatial resolution of the imagery. Therefore, the aim of this study was to compare the optical Landsat-8, Sentinel-2A, and radar Sentinel-1A satellite data for automatic lineament extraction. The framework of automatic approach includes defining the optimal parameters for automatic lineament extraction with a combination of edge detection and line-linking algorithms and determining suitable bands from optical data suited for lineament mapping in the study area. For the result validation, the extracted lineaments are compared against the manually obtained lineaments through the application of directional filtering and edge enhancement as well as to the lineaments digitized from the existing geological maps of the study area. In addition, a digital elevation model (DEM) has been utilized for an accuracy assessment followed by the field verification. The obtained results show that the best correlation between automatically extracted lineaments, manual interpretation, and the preexisting lineament map is achieved from the radar Sentinel-1A images. The tests indicate that the radar data used in this study, with 5872 and 5865 lineaments extracted from VH and VV polarizations respectively, is more efficient for structural lineament mapping than the Landsat-8 and Sentinel-2A optical imagery, from which 2338 and 4745 lineaments were extracted respectively.


2020 ◽  
Vol 12 (6) ◽  
pp. 961 ◽  
Author(s):  
Marinalva Dias Soares ◽  
Luciano Vieira Dutra ◽  
Gilson Alexandre Ostwald Pedro da Costa ◽  
Raul Queiroz Feitosa ◽  
Rogério Galante Negri ◽  
...  

Per-point classification is a traditional method for remote sensing data classification, and for radar data in particular. Compared with optical data, the discriminative power of radar data is quite limited, for most applications. A way of trying to overcome these difficulties is to use Region-Based Classification (RBC), also referred to as Geographical Object-Based Image Analysis (GEOBIA). RBC methods first aggregate pixels into homogeneous objects, or regions, using a segmentation procedure. Moreover, segmentation is known to be an ill-conditioned problem because it admits multiple solutions, and a small change in the input image, or segmentation parameters, may lead to significant changes in the image partitioning. In this context, this paper proposes and evaluates novel approaches for SAR data classification, which rely on specialized segmentations, and on the combination of partial maps produced by classification ensembles. Such approaches comprise a meta-methodology, in the sense that they are independent from segmentation and classification algorithms, and optimization procedures. Results are shown that improve the classification accuracy from Kappa = 0.4 (baseline method) to a Kappa = 0.77 with the presented method. Another test site presented an improvement from Kappa = 0.36 to a maximum of 0.66 also with radar data.


2019 ◽  
Vol 11 (24) ◽  
pp. 3039 ◽  
Author(s):  
Abdelaziz Elfadaly ◽  
Mohamed A. R. Abouarab ◽  
Radwa R. M. El Shabrawy ◽  
Wael Mostafa ◽  
Penelope Wilson ◽  
...  

The primary objective of this study is to leverage the integration of surface mapping data derived from optical, radar, and historic topographical studies with archaeological sampling to identify ancient settlement areas in the Northern Nile Delta, Egypt. This study employed the following methods: digitization of topographic maps, band indices techniques on optical data, the creation of a 3D model from SRTM data, and Sentinel-1 interferometric wide swath (IW) analysis. This type of study is particularly relevant to the search for evidence of otherwise hidden ancient settlements. Due to its geographical situation and the fertility of the Nile, Egypt witnessed the autochthonous development of predynastic and dynastic civilizations, as well as an extensive history of external influences due to Greek, Roman, Coptic, Islamic, and Colonial-era interventions. Excavation work at Buto (Tell el-Fara’in) in 2017–18, carried out by the Kafrelsheikh University (KFS) in cooperation with the Ministry of Antiquities, demonstrated that remote sensing data offers considerable promise as a tool for developing regional settlement studies and excavation strategies. This study integrates the mission work in Buto with the satellite imagery in and around the area of the excavation. The results of the initial Buto area research serve as a methodological model to expand the study area to the North Delta with the goal of detecting the extent of the ancient kingdoms of Buto and Sakha. The results of this research include the creation of a composite historical database using ancient references and early topographical maps (1722, 1941, 1950, and 1997), Optical Corona (1965), Landsat MSS (Multispectral Scanner System) (1973, 1978, and 1988), TM (Thematic Mapper) (2005) data, and Radar SRTM (2014) and Sentinel1 (2018 and 2019) data. The data in this study have been analyzed using the ArcMap, Envi, and SNAP software. The results from the current investigation highlight the rapid changes in the land use/land cover in the last century in which many ancient sites were lost due to agriculture and urban development. Three potential settlement areas have been identified with the Sentinel1 Radar data, and have been integrated with the early maps. These discoveries will help develop excavation strategies aimed at elucidating the ancient settlement dynamics and history of the region during the next phase of research.


2021 ◽  
Vol 13 (2) ◽  
pp. 243
Author(s):  
Amal Chakhar ◽  
David Hernández-López ◽  
Rocío Ballesteros ◽  
Miguel A. Moreno

The availability of an unprecedented amount of open remote sensing data, such as Sentinel-1 and -2 data within the Copernicus program, has boosted the idea of combining the use of optical and radar data to improve the accuracy of agricultural applications such as crop classification. Sentinel-1’s Synthetic Aperture Radar (SAR) provides co- and cross-polarized backscatter, which offers the opportunity to monitor agricultural crops using radar at high spatial and temporal resolution. In this study, we assessed the potential of integrating Sentinel-1 information (VV and VH backscatter and their ratio VH/VV with Sentinel-2A data (NDVI) to perform crop classification and to define which are the most important input data that provide the most accurate classification results. Further, we examined the temporal dynamics of remote sensing data for cereal, horticultural, and industrial crops, perennials, deciduous trees, and legumes. To select the best SAR input feature, we tried two approaches, one based on classification with only SAR features and one based on integrating SAR with optical data. In total, nine scenarios were tested. Furthermore, we evaluated the performance of 22 nonparametric classifiers on which most of these algorithms had not been tested before with SAR data. The results revealed that the best performing scenario was the one integrating VH and VV with normalized difference vegetation index (NDVI) and cubic support vector machine (SVM) (the kernel function of the classifier is cubic) as the classifier with the highest accuracy among all those tested.


Author(s):  
L. Eddahby ◽  
A. A. Kozlova ◽  
M. A. Popov ◽  
N. S. Lubskiy ◽  
D. Mezzane ◽  
...  

<p><strong>Abstract.</strong> Synthetic Aperture Radar (SAR) is an active remote sensing technique capable of providing high-resolution imagery independent from daytime and to great extent unimpaired by weather conditions. Unlike the passive remote sensing active radars receive its' own reflected signal. Features of received signal make able to obtain additional information about surface objects and covers. Because of signal, double reflecting upon vertical surfaces like walls, it become common to study urbanized areas using SAR data. Because of mostly similar spectral characteristic of the typical buildings' roofs and sandy soils, that are distinguishing for Morocco, classification using visible and NIR multispectral remote sensing data is complicated. Thus, SAR data processing technique is rather useful while application to deserted area studying and urbanized areas identification.</p>


2020 ◽  
Author(s):  
Safa Bousbih ◽  
Mehrez Zribi ◽  
Zohra Lili-Chabaane ◽  
Nicolas Baghdadi ◽  
Azza Gorrab ◽  
...  

&lt;p&gt;Soil texture is a key parameter in agricultural processes and an important measure for agricultural prediction, water cycle, filtering of pollutants and carbon storage. Besides, its estimation is essential for agronomists, hydrologists, geologists and environmentalists and for modeling in these application areas. Several studies have been based on understanding and modeling the biological, physical and chemical processes in the soil. Regarding the texture of the soil, few researches propose soil texture spatialization, and are generally based on ground measurements. Among other things, field observations or laboratory analyzes are very expensive and are not very representative. Indeed, the soil texture presents a strong heterogeneity even at the scale of a field. It is then necessary to use precise and spatialized information on soils.&lt;/p&gt;&lt;p&gt;These methods are generally based on remote sensing data and particularly optical data to restore soil component. However, these techniques are strongly affected by atmospheric conditions. This constraint is not valid for Radar sensors (Radio Detection And Ranging). Radar data are mainly sensitive to soil moisture and soil roughness, and has also been evaluated for its ability to perform texture measurements.&lt;/p&gt;&lt;p&gt;The aim of this study is evaluate the potential of these techniques based on optical and radar data for soil texture estimation. By its composition, its structure, its texture and its porosity, soil moisture is strongly influenced by the soil nature. With the arrival of Sentinel-1 (S-1) and Sentinel-2 (S-2) ESA spatial missions, data are acquired with high spatial and temporal resolution between July and early December 2017, on a semi-arid area in central Tunisia. This study is therefore conducted using S-2 SWIR (Short-Wave Infrared) bands (B11 and B12, most sensitive to clay) and soil moisture products derived from radar data. And algorithms based on the support vector machine (SVM) and random forest (RF) methods are proposed for the classification and mapping of clay content.&lt;/p&gt;&lt;p&gt;In order to evaluate the approach and determine the adequate data (between optical and radar data) allowing to precisely characterize the clay content, a cross-validation was used. The SWIR bands lead&amp;#160;to less satisfactory outcomes compared to soil moisture. With an overall accuracy of approximately 65%, soil moisture achieved the best performance for estimating soil texture. The results also showed that RF and SVM are robust classifiers for texture estimation despite the small number of training data. However, RF displays greater accuracy and speed of simulation compared to SVM.&lt;/p&gt;


Author(s):  
V. Нolovan ◽  
V. Gerasimov ◽  
А. Нolovan ◽  
N. Maslich

Fighting in the Donbas, which has been going on for more than five years, shows that a skillful counter-battery fight is an important factor in achieving success in wars of this kind. Especially in conditions where for the known reasons the use of combat aviation is minimized. With the development of technical warfare, the task of servicing the counter-battery fight began to rely on radar stations (radar) to reconnaissance the positions of artillery, which in modern terms are called counter-battery radar. The principle of counter-battery radar is based on the detection of a target (artillery shell, mortar mine or rocket) in flight at an earlier stage and making several measurements of the coordinates of the current position of the ammunition. According to these data, the trajectory of the projectile's flight is calculated and, on the basis of its prolongation and extrapolation of measurements, the probable coordinates of the artillery, as well as the places of ammunition falling, are determined. In addition, the technical capabilities of radars of this class allow you to recognize the types and caliber of artillery systems, as well as to adjust the fire of your artillery. The main advantages of these radars are:  mobility (transportability);  inspection of large tracts of terrain over long distances;  the ability to obtain target's data in near real-time;  independence from time of day and weather conditions;  relatively high fighting efficiency. The purpose of the article is to determine the leading role and place of the counter-battery radar among other artillery instrumental reconnaissance tools, to compare the combat capabilities of modern counter-battery radars, armed with Ukrainian troops and some leading countries (USA, China, Russia), and are being developed and tested in Ukraine. The method of achieving this goal is a comparative analysis of the features of construction and combat capabilities of modern models of counter-battery radar in Ukraine and in other countries. As a result of the conducted analysis, the directions of further improvement of the radar armament, increasing the capabilities of existing and promising counter-battery radar samples were determined.


2019 ◽  
Vol 3 (1) ◽  
pp. 14-27
Author(s):  
Barry Haack ◽  
Ron Mahabir

This analysis determined the best individual band and combinations of various numbers of bands for land use land cover mapping for three sites in Peru. The data included Landsat Thematic Mapper (TM) optical data, PALSAR L-band dual-polarized radar, and derived radar texture images. Spectral signatures were first obtained for each site class and separability between classes determined using divergence measures. Results show that the best single band for analysis was a TM band, which was different for each site. For two of the three sites, the second best band was a radar texture image from a large window size. For all sites the best three bands included two TM bands and a radar texture image. The original PALSAR bands were of limited value. Finally upon further analysis it was determined that no more than six bands were needed for viable classification at each study site.


2019 ◽  
Vol 11 (24) ◽  
pp. 2991 ◽  
Author(s):  
Jin Yan ◽  
Mingyang Lv ◽  
Zhixing Ruan ◽  
Shiyong Yan ◽  
Guang Liu

A surge-type glacier is a special and dangerous type of glacier, which can advance quickly in a short-time with cycles. Glaciers in the Yangtze River headwater are generally acknowledged to be in a stable state. However, not all of those glaciers are stable. In this paper, five glaciers from the Yangtze River headwater glacier were selected as the experimental subjects, and multi-source remote sensing images were used to study and analyze the surge behavior over the past 30 years. Based on the Landsat series data, ERS-2, and ENVISAT radar data, this paper extracts the glacier centerline information, glacial area information, and glacial flow velocity during different time periods from 1988 to 2018, which are used to monitor the active periods of glacier surges. We found three surge-type glaciers in the study area. The glacial characteristics of the three glaciers showed some drastic changes, they can advance quickly nearly 800 m in active periods, their area change can reach 2.0 × 106 m2, and their flow velocity can suddenly increase by dozens of times. Surging periods and the initiated time of the three glaciers are different, which are locked in 1997, 2003, and 1997–1998. All those surges ended within one to two years. We suggest that the surges in this paper are dominated by hydrological conditions.


Author(s):  
Qijiao Xie ◽  
Jing Li

As a nature-based solution, development of urban blue-green spaces is widely accepted for mitigating the urban heat island (UHI) effect. It is of great significance to determine the main driving factors of the park cool island (PCI) effect for optimizing park layout and achieving a maximum cooling benefit of urban parks. However, there have been obviously controversial conclusions in previous studies due to varied case contexts. This study was conducted in Wuhan, a city with high water coverage, which has significant differences in context with the previous case cities. The PCI intensity and its correlation with park characteristics were investigated based on remote sensing data. The results indicated that 36 out of 40 urban parks expressed a PCI effect, with a PCI intensity of 0.08~7.29 °C. As expected, larger parks with enough width had stronger PCI intensity. An increased density of hardened elements in a park could significantly weaken PCI effect. Noticeably, in this study, water bodies in a park contributed the most to the PCI effect of urban parks, while the vegetated areas showed a negative impact on the PCI intensity. It implied that in a context with higher water coverage, the cooling effect of vegetation was weakened or even masked by water bodies, due to the interaction effect of different variables on PCI intensity.


Sign in / Sign up

Export Citation Format

Share Document