scholarly journals GEOSPATIAL ASSESSMENT FOR PLANNING A SMART ENERGY CITY USING ROOFTOP SOLAR PHOTOVOLTAIC IN BANDUNG CITY, INDONESIA

Author(s):  
K. T. N. Ihsan ◽  
A. D. Sakti ◽  
K. Wikantika

Abstract. Increasing the production of clean and environmentally friendly energy has become one of the world agendas as a strategic effort in dealing with long-term climate change. Seeing the potential of the energy produced, the ease in the installation process, with the small risk of harm generated, solar energy has received significant attention from many countries in the world. The potential for solar energy in Indonesia alone reaches 207 GWp, but only 145.81 MWp has been utilized. Currently, the Indonesian government has set a target to build a Solar Power Plant capacity in 2025 of 6.5 GWh. Urban areas are areas with higher energy demand than rural areas, but the availability of vacant land in urban areas is very minimal for installing solar power plants. Therefore, rooftop solar PV(Photovoltaic) can be a solution in dense areas such as cities. Good planning by looking at the potential resources and energy needs in spatial is needed to manage and utilize energy optimally and sustainably in urban areas. This study aims to develop a geospatial assessment for plan smart energy city that uses rooftop solar PV's potential energy in every building that is effective and efficient. The novelty in the analysis of the distribution of the potential for rooftop solar PV development in urban areas integrates meteorological and spatial aspects and socio-economic aspects. Integration of multi-dynamic spatial data uses in determining the rooftop solar PV construction location, such as meteorological data for solar energy potential, increasing energy needs of each building, and socio-economy data. The data source used comes from statistical data and remote sensing data. The analysis will be carried out temporally (2008, 2013, and 2018) to see the pattern of changes in aspects used in a certain period so that the development plan can be carried out more optimally. This research's output is the formation of a priority analysis of solar PV rooftop construction in urban areas, especially the city of Bandung. The result of energy can also produce by the construction of rooftop solar PV in a potential area. This research is expected to be utilized by policymakers to develop renewable energy in the city of Bandung and increase community participation in switching to renewable energy.

2013 ◽  
Vol 4 (2) ◽  
Author(s):  
Isak Karabegović ◽  
Vlatko Doleček

Energy security and stability are currently the main issues throughout the world. Applied research is carried out all over the world in order to increase a share of renewable energy sources in the overall task of energy generation. In near future environmentally friendly energy sources should be found that will enable the mankind to cover its energy needs. Renewable energy sources are currently offered worldwide as an environmentally friendly and acceptable solution; however, one may always wonder whether it is realistic to expect such energy sources to be developed at a level sufficient to meet the mankind’s ever increasing energy needs. This caution is caused by the following facts associated with the renewable energy sources available today: the wind energy is not everywhere available in sufficient quantities, solar energy is not sufficiently used, hydropower (we refer to small hydro power plants), is not big enough for this quantity of energy, geothermal energy can be optimally used only at places where thermal energy from the inner core of the Earth is near the surface, tidal energy (energy of the waves) has great potentials but is very little used due to its scarcity and non-accessibility, bioenergy, as a substitute for conventional fossil fuels, is not completely environmentally friendly or acceptable due to the emission of greenhouse gases in the atmosphere. On the other hand, without implementing the adequate policies in the energy sector operation, it is not possible to have any industrial, economic or social progress in the world. Energy security and stability are only one part in achieving the ultimate goals: sustainable economy, clean environment, high standard of living, prosperity and health of the population. In the light of all the above, the paper will investigate the state and perspective of renewable energy sources with a special emphasis on the potential of solar energy.


Most of the countries in the world are concentrating on renewable energy generation, due to day-day increase in population increasing the energy demand, also to make their environment sustainable. With the many of features, use of megawatts rating solar photovoltaic (PV) power plants are becoming more popular for upgrading the existing power generation throughout the world. Moreover, among the existing renewable energy generations, solar power is the primary choice to meet the rapidly increasing demands; since solar PV plant installing time is relatively quick, say about in 3- 4 months, compared to conventional (thermal, hydro & diesel) plants which may require about 3-4 years. The low voltage (270‒700V) power converters require a filter and a step-up transformer for interconnecting the local grids with solar PV power plants. The advances in power converters without transformers and filters have recently become more attractive for solar PV power plants connected directly to grid. The study of this article describes the essential requirement and the technological developments in the design of power electronics converters, together with their modulation schemes to integrate solar power directly with standard power grid. This article, review ongoing research activities and the probable directions for the future research in developing inverters for cost-efficient grid connected solar PV plants


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Huang Huanhai

The potential crisis of energy and the deterioration of ecological environment make the world's cumbersomedevelopment of renewable energy including new energy, including solar energy. Traditional energy in the coal, oil andnatural gas are evolved from ancient fossils, it is collectively referred to as fossil fuels. As the world's energy needscontinue to increase, fossil fuels will also be depleted, it is necessary to fi nd a new energy to replace the traditionalenergy. Solar energy is a clean renewable energy with mineral energy incomparable superiority. Modern society shouldbe a conservation-oriented society, and social life should also be a life-saving energy. At the same time, Premier WenJiabao also proposed on June 30, 2005 and stressed the need to speed up the construction of a conservation-orientedsociety. And solar energy as an inexhaustible new environmentally friendly energy has become the world's energyresearch work in the world an important issue. Is the world in the economic situation to take a simpler, economical,environmentally friendly and reliable building heating and heating energy-saving measures. This paper summarizes thecurrent global energy status, indicating the importance of solar power and prospects. Details of the various solar powergeneration methods and their advantages, and made a comparison of this power generation parameters. At the sametime pointed out that the diffi culties faced by solar power and solutions, as well as China's solar power of the favorableconditions and diffi culties. The future of China's solar energy made a prospect.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8142
Author(s):  
Sanzana Tabassum ◽  
Tanvin Rahman ◽  
Ashraf Ul Islam ◽  
Sumayya Rahman ◽  
Debopriya Roy Dipta ◽  
...  

The ambitious target of net-zero emission by 2050 has been aggressively driving the renewable energy sector in many countries. Leading the race of renewable energy sources is solar energy, the fastest growing energy source at present. The solar industry has witnessed more growth in the last decade than it has in the past 40 years, owing to its technological advancements, plummeting costs, and lucrative incentives. The United States is one of the largest producers of solar power in the world and has been a pioneer in solar adoption, with major projects across different technologies, mainly photovoltaic, concentrated solar power, and solar heating and cooling, but is expanding towards floating PV, solar combined with storage, and hybrid power plants. Although the United States has tremendous potential for exploiting solar resources, there is a scarcity of research that details the U.S. solar energy scenario. This paper provides a comprehensive review of solar energy in the U.S., highlighting the drivers of the solar industry in terms of technology, financial incentives, and strategies to overcome challenges. It also discusses the prospects of the future solar market based on extensive background research and the latest statistics. In addition, the paper categorizes the U.S. states into five tiers based on their solar prospects calculated using analytical hierarchy process and regression analysis. The price of solar technologies in the U.S. is also predicted up to 2031 using Wright’s law, which projected a 77% reduction in the next decade.


2021 ◽  
Author(s):  
Ankit Verma ◽  
John Connolly ◽  
Noel O'Connor

<p>The development of a sustainable and renewable energy system is a significant challenge for Ireland. In line with UN and EU policies, Ireland aims to transition to a competitive, low carbon, climate-resilient and environmentally sustainable economy by 2050 (Project Ireland 2040 National Planning Framework). Ireland is committed to an aggregate reduction in CO<sub>2</sub> emissions of at least 80% (compared to 1990 levels) by 2050 across the electricity generation, built environment and transport sectors. Renewable energy can help Ireland reduce GHG emissions and carbon footprint as energy demands grow. It also reduces dependencies on fossil fuels as well as increases energy supply security.</p><p>According to the Sustainable Energy Authority of Ireland’s “Energy in Ireland 2020” report, 36.5% of electricity demand was met by renewable energy sources in 2019. Wind energy contributes 32% while solar energy contributes to <1%. Significant investment has been made in Ireland’s wind sector; however, the solar energy sector is relatively new. Ireland has the second-lowest total installed and cumulated solar photovoltaic (PV) capacity in the EU with just 36 MW or 7.3 W per inhabitant. (EurObserv'ER 2019).</p><p>Solar prospecting is necessary to identify optimum locations where solar farms can be established. Commercial and industrial building rooftops in urban areas offer a suitable location for establishing rooftop solar farms due to good connectivity with the electricity grid and proximity to users. Here we present an urban solar prospecting study in Dublin, Ireland.</p><p>A very high-resolution geospatial dataset was acquired for 47 industrial areas covering 53.3 km<sup>2</sup>. The data comprises of very high-resolution aerial images (12.5 cm/pixel) and digital surface model (DSM) (25 cm/pixel).</p><p>The high-resolution DSMs were used to model solar irradiation on building rooftops in ArcGIS Pro using the area solar analyst tool. These models were optimised for Irish conditions using Met Éireann solar radiation data for Dublin. The maximum solar insolation received in Dublin is 1000-1050 kWh/m<sup>2</sup>. The results demonstrate that there is potentially a large amount of commercial and industrial rooftop surface area available for PV installation in Dublin. These rooftops can generate a significant amount of electricity and help to offset CO<sub>2</sub> emissions.</p><p> </p>


TERANG ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 100-105
Author(s):  
Septianissa Azzahra ◽  
Samsurizal Samsurizal ◽  
Christiono Christiono ◽  
Miftahul Fikri

Renewable energy, especially solar power plants (PLTS), is now begin to develop their applications to many forms, such as: installed as a home power supply, power supply for buildings, and also as power supply for street lighting (solar street light). Madrasah Aliyah Al-Khairiyah Rancranji In this regard, as a partner, demand a socialization and a study for their students to understand more about renewable energy topics especially about solar energy. And the limited electric power is also one of the problems for this school. Therefore, PKM activity in Madrasah Aliyah Al-Khairiyah Rancaranji is a solution given by the PKM team by providing learning and an introduction of renewable energy as well as workshop and installation of PLTS and road lamps based on solar cell. Results gained after the implementation of this activity are students understand and knows about the renewable energy, its application and its benefits in daily life.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3131 ◽  
Author(s):  
Adarsh Vaderobli ◽  
Dev Parikh ◽  
Urmila Diwekar

Renewable energy use can mitigate the effects of climate change. Solar energy is amongst the cleanest and most readily available renewable energy sources. However, issues of cost and uncertainty associated with solar energy need to be addressed to make it a major source of energy. These uncertainties are different for different locations. In this work, we considered four different locations in the United States of America (Northeast, Northwest, Southeast, Southwest). The weather and cost uncertainties of these locations are included in the formulation, making the problem an optimization-under-uncertainty problem. We used the novel Better Optimization of Nonlinear Uncertain Systems (BONUS) algorithm to solve these problems. The performance and economic models provided by the System Advisory Model (SAM) system from NREL were used for this optimization. Since this is a black-box model, this adds difficulty for optimization and optimization under uncertainty. The objective function and constraints in stochastic optimization (stochastic programming) problems are probabilistic functionals. The generalized treatment of such problems is to use a two-loop computationally intensive procedure, with an inner loop representing probabilistic or stochastic models or scenarios instead of the deterministic model, inside the optimization loop. BONUS circumvents the inner sampling loop, thereby reducing the computational intensity significantly. BONUS can be used for black-box models. The results show that, using the BONUS algorithm, we get 41%–47% of savings on the expected value of the Levelized Cost of Electricity (LCOE) for Parabolic Trough Solar Power Plants. The expected LCOE in New York is 57.42%, in Jacksonville is 38.52%, and in San Diego is 17.57% more than in Las Vegas. This difference is due to the differences in weather and weather uncertainties at these locations.


Renewable energy is being promoted amidst rising environmental concerns associated with fossil-fuel usage for power generation. The stock of such fuels is also limited and is fast depleting. Renewable energy sources such as solar photovoltaic (PV) systems present a clean alternative that has become cost-competitive with conventional thermal power generation systems. However, to counter the intermittent nature of solar power and ensure firm power supply, energy storage is essential. This paper presents a comparative analysis of power supply options based on two solar energy technologies - PV and concentrated solar power (CSP). Energy storage in the form of battery and thermal energy respectively has been included and different combinations of supply options, along with utility grid, have been analyzed in terms of the levelized cost of electricity (LCOE). The LCOE values for supplying a particular substation load in India have been compared and it was found that CSP with thermal energy storage emerged to be the economically viable option for supplying the load.


2021 ◽  
pp. 1-12
Author(s):  
Ibrahim Alsaidan ◽  
Mohammad Rizwan ◽  
Muhannad Alaraj

The rapid advancements in the technology, increase in comfort levels, movement of population to urban areas, depletion of fossil fuels and increasing greenhouse gas emissions have invigorated the use of renewable energy resources for power generation in the last few years. The major renewable energy resources which have potential to fulfill the requirements includes solar energy, wind energy, small hydro and biomass etc. Among these major resources, solar energy-based technology is considered as one of the fastest growing technology because of its various advantages and ubiquitous availability of the resources. However, there are certain challenges in the utilization of solar energy for power generation because of various uncertainties in the atmosphere. As a result, the power generated from solar based power plants is fluctuating in nature which is not desirable. Therefore, the utilities are adopting the smart grid approach which has ability to integrate the solar power plants efficiently and the solar energy forecasting is one of the essential tools for this new model. In this paper, AI based techniques are utilized to forecast solar energy using high quality measured solar irradiance data. The forecasting accuracy of the developed models is evaluated based on statistical indices such as absolute relative error and mean absolute percentage error. The results obtained from the developed models are compared to observe the forecasting ability and performance with the high-quality measured data and found accurate.


Author(s):  
V. I. Mironchuk ◽  
A. A. Velchenko

The article presents an analysis of the state of development of solar energy in Europe and  the  Republic  of  Belarus  for 2020.  An algorithm for increasing the efficiency factor of  solar power plants by localizing the solar trajectory depending on the latitude and longitude of the area has been proposed. In particular, taking into account the angle of the Sun position above the horizon and the azimuth angle of the Sun, the increase in the efficiency factor of solar power plants for the Republic of Belarus is calculated. Based on this algorithm, a program has been written that makes it possible to draw a diagram of the solar trajectory. An analysis has been made of the degree of localization of solar energy for solstice days in 6 oblast (regional) centers of the Republic of Belarus; it is found that the highest intensity of solar radiation is observed in Brest and Gomel, the average in Grodno, Minsk and Mogilev, while the lowest one – in the city of Vitebsk. A comparative analysis of the solar trajectory of the city of Berlin (Germany) with the city of Gomel and the city of Brest is carried out. Recommendations have been developed for the effective operation of solar power plants in the oblast (regional) cities of the Republic of Belarus during the year in an autonomous and combined mode of operation. The obtained numerical calculations of the solar trajectory make it possible to optimize the orientation of solar panels for permanently installed panels and for automated solar tracking systems, as well as to select the optimal configuration of the power plant equipment for any geographic area.


Sign in / Sign up

Export Citation Format

Share Document