scholarly journals INTEGRATION OF DATA OBTAINED BY PHOTOGRAMMETRIC METHODS SUCH AS A TERRESTRIAL LASER SCANNER AND UAV SYSTEM AND USE IN 3D CITY MODELS: THE CASE OF KÖYCEĞİZ CAMPUS

Author(s):  
İ. Dursun ◽  
A. Varlık

Abstract. The ever-growing and complex structure of cities has increased the need to include advanced information and communication technologies in management processes. In parallel with this, the concept of smart cities has emerged and the creation and use of three-dimensional (3D) city models have become one of the most important components for tracking cities online. Depending on technological advances; Photogrammetric methods come to the fore in surveying because it offers convenience in terms of cost and time. Among the photogrammetric methods, mobile laser scanning and UAV (Unmanned Aerial Vehicle) systems have become very popular. In this study; Necmettin Erbakan University, Faculty of Social Sciences and Humanities (SBIF), located in Köyceğiz Campus, was chosen as the study area and focused on integrating three-dimensional (3D) models produced by terrestrial and aerial photogrammetry under the theme of smart cities.

Author(s):  
Jovana Radović

Within the last years terrestrial and airborne laser scanning has become a powerful technique for fast and efficient three-dimensional data acquisition of different kinds of objects. Airborne laser system (LiDAR) collects accurate georeferenced data of extremely large areas very quickly while the terrestrial laser scanner produces dense and geometrically accurate data. The combination of these two segments of laser scanning provides different areas of application. One of the applications is in the process of reconstruction of objects. Objects recorded with laser scanning technology and transferred into the final model represent the basis for building an object as it was original. In this paper, there will be shown two case studies based on usage of airborne and terrestrial laser scanning and processing of the data collected by them.


Author(s):  
Juha Hyyppä ◽  
Lingli Zhu ◽  
Zhengjun Liu ◽  
Harri Kaartinen ◽  
Anttoni Jaakkola

Smartphones with larger screens, powerful processors, abundant memory, and an open operation system provide many possibilities for 3D city or photorealistic model applications. 3D city or photorealistic models can be used by the users to locate themselves in the 3D world, or they can be used as methods for visualizing the surrounding environment once a smartphone has already located the phone by other means, e.g. by using GNSS, and then to provide an interface in the form of a 3D model for the location-based services. In principle, 3D models can be also used for positioning purposes. For example, matching of images exported from the smartphone and then registering them in the existing 3D photorealistic world provides the position of the image capture. In that process, the central computer can do a similar image matching task when the users locate themselves interactively into the 3D world. As the benefits of 3D city models are obvious, this chapter demonstrates the technology used to provide photorealistic 3D city models and focus on 3D data acquisition and the methods available in 3D city modeling, and the development of 3D display technology for smartphone applications. Currently, global geoinformatic data providers, such as Google, Nokia (NAVTEQ), and TomTom (Tele Atlas), are expanding their products from 2D to 3D. This chapter is a presentation of a case study of 3D data acquisition, modeling and mapping, and visualization for a smartphone, including an example based on data collected by mobile laser scanning data from the Tapiola (Espoo, Finland) test field.


Author(s):  
J. Yan ◽  
A. A. Diakité ◽  
S. Zlatanova

<p><strong>Abstract.</strong> The navigation of pedestrians can be regarded as their movements from one unoccupied space to another unoccupied and connected space. These movements generally occur in three types of environments: indoor, outdoor, and semi-bounded (top-bounded, and/or side-bounded) spaces. While the two former types of spaces are subject to most of the attention, the latter (semi-bounded) also presents a valuable impact on the navigation behaviour. For example, top-bounded environments (e.g. roofs, shelters, etc.) are very popular for pedestrian navigation since a top structure can offer protection from harsh weather, rain, or strong sun. However, such semibounded spaces are completely missing in current navigation models and systems. This is partly explained by the fact that modelling the space, which is by defining a three-dimensional boundless and extensible component (mainly out of the indoor environment), is a very challenging task. In this paper, we propose a structure-based approach for top-bounded space extraction in the built environment, relying on 3D models. Thanks to the rapid expansion and availability of 3D city models, our approach can help to account for such type of spaces in 3D pedestrian navigation systems.</p>


2013 ◽  
pp. 1011-1052 ◽  
Author(s):  
Juha Hyyppä ◽  
Lingli Zhu ◽  
Zhengjun Liu ◽  
Harri Kaartinen ◽  
Anttoni Jaakkola

Smartphones with larger screens, powerful processors, abundant memory, and an open operation system provide many possibilities for 3D city or photorealistic model applications. 3D city or photorealistic models can be used by the users to locate themselves in the 3D world, or they can be used as methods for visualizing the surrounding environment once a smartphone has already located the phone by other means, e.g. by using GNSS, and then to provide an interface in the form of a 3D model for the location-based services. In principle, 3D models can be also used for positioning purposes. For example, matching of images exported from the smartphone and then registering them in the existing 3D photorealistic world provides the position of the image capture. In that process, the central computer can do a similar image matching task when the users locate themselves interactively into the 3D world. As the benefits of 3D city models are obvious, this chapter demonstrates the technology used to provide photorealistic 3D city models and focus on 3D data acquisition and the methods available in 3D city modeling, and the development of 3D display technology for smartphone applications. Currently, global geoinformatic data providers, such as Google, Nokia (NAVTEQ), and TomTom (Tele Atlas), are expanding their products from 2D to 3D. This chapter is a presentation of a case study of 3D data acquisition, modeling and mapping, and visualization for a smartphone, including an example based on data collected by mobile laser scanning data from the Tapiola (Espoo, Finland) test field.


Author(s):  
G. Agugiaro

This paper presents and discusses the results regarding the initial steps (selection, analysis, preparation and eventual integration of a number of datasets) for the creation of an integrated, semantic, three-dimensional, and CityGML-based virtual model of the city of Vienna. CityGML is an international standard conceived specifically as information and data model for semantic city models at urban and territorial scale. It is being adopted by more and more cities all over the world. &lt;br&gt;&lt;br&gt; The work described in this paper is embedded within the European Marie-Curie ITN project “Ci-nergy, Smart cities with sustainable energy systems”, which aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. Given the scope and scale of the project, it is therefore vital to set up a common, unique and spatio-semantically coherent urban model to be used as information hub for all applications being developed. This paper reports about the experiences done so far, it describes the test area and the available data sources, it shows and exemplifies the data integration issues, the strategies developed to solve them in order to obtain the integrated 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.


Author(s):  
S. H. Nguyen ◽  
T. H. Kolbe

Abstract. Urban digital twins have been increasingly adopted by cities worldwide. Digital twins, especially semantic 3D city models as key components, have quickly become a crucial platform for urban monitoring, planning, analyses and visualization. However, as the massive influx of data collected from cities accumulates quickly over time, one major problem arises as how to handle different temporal versions of a virtual city model. Many current city modelling deployments lack the capability for automatic and efficient change detection and often replace older city models completely with newer ones. Another crucial task is then to make sense of the detected changes to provide a deep understanding of the progresses made in the cities. Therefore, this research aims to provide a conceptual framework to better assist change detection and interpretation in virtual city models. Firstly, a detailed hierarchical model of all potential changes in semantic 3D city models is proposed. This includes appearance, semantic, geometric, topological, structural, Level of Detail (LoD), auxiliary and scoped changes. In addition, a conceptual approach to modelling most relevant stakeholders in smart cities is presented. Then, a model - reality graph is used to represent both the different groups of stakeholders and types of changes based on their relative interest and relevance. Finally, the study introduces two mathematical methods to represent the relevance relations between stakeholders and changes, namely the relevance graph and the relevance matrix.


Author(s):  
J. Meidow ◽  
H. Hammer ◽  
M. Pohl ◽  
D. Bulatov

Many buildings in 3D city models can be represented by generic models, e.g. boundary representations or polyhedrons, without expressing building-specific knowledge explicitly. Without additional constraints, the bounding faces of these building reconstructions do not feature expected structures such as orthogonality or parallelism. The recognition and enforcement of man-made structures within model instances is one way to enhance 3D city models. Since the reconstructions are derived from uncertain and imprecise data, crisp relations such as orthogonality or parallelism are rarely satisfied exactly. Furthermore, the uncertainty of geometric entities is usually not specified in 3D city models. Therefore, we propose a point sampling which simulates the initial point cloud acquisition by airborne laser scanning and provides estimates for the uncertainties. We present a complete workflow for recognition and enforcement of man-made structures in a given boundary representation. The recognition is performed by hypothesis testing and the enforcement of the detected constraints by a global adjustment of all bounding faces. Since the adjustment changes not only the geometry but also the topology of faces, we obtain improved building models which feature regular structures and a potentially reduced complexity. The feasibility and the usability of the approach are demonstrated with a real data set.


Author(s):  
M. Marčiš ◽  
P. Barták ◽  
D. Valaška ◽  
M. Fraštia ◽  
O. Trhan

In the documentation of cultural heritage, we can encounter three dimensional shapes and structures which are complicated to measure. Such objects are for example spiral staircases, timber roof trusses, historical furniture or folk costume where it is nearly impossible to effectively use the traditional surveying or the terrestrial laser scanning due to the shape of the object, its dimensions and the crowded environment. The actual methods of digital photogrammetry can be very helpful in such cases with the emphasis on the automated processing of the extensive image data. The created high resolution 3D models and 2D orthophotos are very important for the documentation of architectural elements and they can serve as an ideal base for the vectorization and 2D drawing documentation. This contribution wants to describe the various usage of image based modelling in specific interior spaces and specific objects. The advantages and disadvantages of the photogrammetric measurement of such objects in comparison to other surveying methods are reviewed.


2021 ◽  
Vol 12 (24) ◽  
pp. 115
Author(s):  
Diego Francisco García-Molina ◽  
Ramón González-Merino ◽  
Jesús Rodero-Pérez ◽  
Bartolomé Carrasco-Hurtado

<p class="VARKeywords">One of the main objectives of heritage management policies is to promote measures aimed at the maintenance, restoration and enhancement of cultural and archaeological assets. To guarantee this, the responsible institutions must promote actions for the dissemination and transference of cultural heritage, as well as promoting actions with the greatest possible rigour, developing scientific and technical studies that support and improve intervention methods. Recent technological advances in fields such as photogrammetry, digital terrestrial scanning and 3D modelling have made a significant contribution to the digital preservation and dissemination of architectural heritage.</p><p class="VARKeywords">European administrations, in their desire of regional development, as well as the central or local governments have notably boosted the recovery of their rich and diverse heritage. A particular case is Priego de Cordoba’s Castle, a stronghold which was one of the most important monumental icons of the Andalusian period.</p><p class="VARKeywords">Currently, this site is the main target of many architectural interventions and a model due to the implementation of last generation techniques in digital preservation. The local archaeological department promotes a large number of interventions and archaeological excavations. This has made a priority to get a qualitative geometrical 3D documentation, and therefore a constantly updated the point cloud (xyzRGB).</p><p class="VARKeywords">This paper is focussed on presenting the results of the digital preservation process through 2D planimetry obtained from photogrammetric technics, 3D models, and geospatial data. These techniques are a previous step to large architectonical intervention planned in Priego de Cordoba’s Castle, in particular, the identified structures as Wall 1 and Tower 1.</p><p class="VARKeywords">Two out of the three studied structures can be found in Wall 1. They correspond to a cobblestone pavement located in the rampart of the Wall 1, which is a post-medieval period; a double-stepped semi-underground path, excavated in the infill of the wall. The third structure studied in this paper consists of a well, which drills vertically the infill of the wall of the Tower 1. This feature is interpreted in the last research as a vertical well to place the weights of the clock sited in this tower until the 19th century.</p><p class="VARKeywords">This work combines two techniques of geometric documentation to obtain a more complete point cloud. The terrestrial laser scanning, and the photogrammetry due to the higher colour performance, along with the completion of the point cloud obtained with the laser scanner. Along with this study, we will analyse the features which will better define the best technique to fit the documentation of the different structures. Their geometric characteristics, the incidence of sunlight or the accessibility will condition the use and choice of the technique.</p><p class="VARKeywords">We have stated that there is software nowadays which makes it easier to access and consult the information through new computing hardware. Besides, we have highlighted the importance of knowledge and synergy from the different stakeholders implied (city council, technological centre and private companies). The final goal consists of making the society aware of the capital importance of digital preservation as well as dissemination of science.</p>


Spatium ◽  
2016 ◽  
pp. 30-36 ◽  
Author(s):  
Petar Pejic ◽  
Sonja Krasic

Digital three-dimensional models of the existing architectonic structures are created for the purpose of digitalization of the archive documents, presentation of buildings or an urban entity or for conducting various analyses and tests. Traditional methods for the creation of 3D models of the existing buildings assume manual measuring of their dimensions, using the photogrammetry method or laser scanning. Such approaches require considerable time spent in data acquisition or application of specific instruments and equipment. The goal of this paper is presentation of the procedure for the creation of 3D models of the existing structures using the globally available web resources and free software packages on standard PCs. This shortens the time of the production of a digital three-dimensional model of the structure considerably and excludes the physical presence at the location. In addition, precision of this method was tested and compared with the results acquired in a previous research.


Sign in / Sign up

Export Citation Format

Share Document