scholarly journals A STUDY ON THREE-DIMENSIONAL PRINTING REPLICATION FOR USABILITY OF ARTIFACTS

Author(s):  
S. Hong ◽  
Y. H. Jo

Abstract. In the field of cultural heritage, replication has been performed for preservation, exhibition, and education purposes. In particular, due to advancement in computer technology, replication which combines the three-dimensional (3D) scanning and printing has widely performed. These technologies have been able to ensure morphological similarity as well as to avoid damaging artifacts in a contactless manner. In this study, a design mock-up for producing replacements was made for the purpose of preserving original forms, usability, and mass production for ritual utensils used in ancestral memorial rites annually. 3D precision scanner was used to obtain external information of ritual utensils and shape information of pattern parts. The measurements on height, width, and thickness of the body, and two handles and three feet showed fine shape differences, respectively. Therefore, representative models were selected and reconstructed. In addition, the upper and lower parts of the body, handles, and feet were separately manufactured for mass production by using sand casting. A model manufactured during the reverse design like above was completed by considering average shrinkage (4%) for the casting of copper-tin alloys. A model was completed and 3D-printed with a material extrusion technique, and a design mock-up for replication was created. In this study, a 3D printing technology was applied to ritual utensils and presented a replication methodology applicable to used artifacts. For this purpose, a model suitable for the replication method was produced based on the data obtained by 3D scanning of ritual utensils. A design mock-up, which is 3D-printed with a material extrusion technique, has enhanced design completeness by performing continuous design and dimensional inspection.

2014 ◽  
Vol 41 (10) ◽  
pp. 869-877 ◽  
Author(s):  
Gabriel B. Dadi ◽  
Timothy R.B. Taylor ◽  
Paul M. Goodrum ◽  
William F. Maloney

Engineering information delivery can be a source of inefficient communication of design, leading to construction rework and lower worker morale. Due to errors, omissions, and misinterpretations, there remains a great opportunity to improve the traditional documentation of engineering information that craft professionals use to complete their work. Historically, physical three dimensional (3D) models built by hand provided 3D physical representations of the project to assist in sequencing, visualization, and planning of critical construction activities. This practice has greatly diminished since the adoption of 3D computer-aided design (CAD) and building information modeling technologies. Recently, additive manufacturing (a.k.a. 3D printing) technologies have allowed for three dimensional printing of 3D CAD models. A cognitive experiment was established to measure the effectiveness of 2D drawings, a 3D computer model, and a 3D printed model in delivering engineering information to an end-user are scientifically measured. The 3D printed model outperformed the 2D drawings and 3D computer interface in productivity measures. This paper’s primary contribution to the body of knowledge is identification of how different mediums of engineering information influence the performance of a simple task execution.


Robotica ◽  
2007 ◽  
Vol 25 (5) ◽  
pp. 581-586 ◽  
Author(s):  
V. K. Chitrakaran ◽  
A. Behal ◽  
D. M. Dawson ◽  
I. D. Walker

SUMMARYIn this paper, we investigate the problem of measuring the shape of a continuum robot manipulator using visual information from a fixed camera. Specifically, we capture the motion of a set of fictitious planes, each formed by four or more feature points, defined at various strategic locations along the body of the robot. Then, utilizing expressions for the robot forward kinematics as well as the decomposition of a homography relating a reference image of the robot to the actual robot image, we obtain the three-dimensional shape information continuously. We then use this information to demonstrate the development of a kinematic controller to regulate the manipulator end-effector to a constant desired position and orientation.


2018 ◽  
Vol 30 (2) ◽  
pp. 159-174 ◽  
Author(s):  
PengPeng Hu ◽  
Duan Li ◽  
Ge Wu ◽  
Taku Komura ◽  
Dongliang Zhang ◽  
...  

PurposeCurrently, a common method of reconstructing mannequin is based on the body measurements or body features, which only preserve the body size lacking of the accurate body geometric shape information. However, the same human body measurement does not equal to the same body shape. This may result in an unfit garment for the target human body. The purpose of this paper is to propose a novel scanning-based pipeline to reconstruct the personalized mannequin, which preserves both body size and body shape information.Design/methodology/approachThe authors first capture the body of a subject via 3D scanning, and a statistical body model is fit to the scanned data. This results in a skinned articulated model of the subject. The scanned body is then adjusted to be pose-symmetric via linear blending skinning. The mannequin part is then extracted. Finally, a slice-based method is proposed to generate a shape-symmetric 3D mannequin.FindingsA personalized 3D mannequin can be reconstructed from the scanned body. Compared to conventional methods, the method can preserve both the size and shape of the original scanned body. The reconstructed mannequin can be imported directly into the apparel CAD software. The proposed method provides a step for digitizing the apparel manufacturing.Originality/valueCompared to the conventional methods, the main advantage of the authors’ system is that the authors can preserve both size and geometry of the original scanned body. The main contributions of this paper are as follows: decompose the process of the mannequin reconstruction into pose symmetry and shape symmetry; propose a novel scanning-based pipeline to reconstruct a 3D personalized mannequin; and present a slice-based method for the symmetrization of the 3D mesh.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Lorenzo Dall’Ava ◽  
Harry Hothi ◽  
Johann Henckel ◽  
Anna Di Laura ◽  
Paul Shearing ◽  
...  

Abstract Background The design freedom allowed by three-dimensional (3D) printing enables the production of acetabular off-the-shelf cups with complex porous structures. The only studies on these designs are limited to clinical outcomes. Our aim was to analyse and compare the designs of different 3D printed cups from multiple manufacturers (Delta TT, Trident II Tritanium and Mpact 3D Metal). Methods We analysed the outer surface of the cups using scanning electron microscopy (SEM) and assessed clinically relevant morphometric features of the lattice structures using micro-computed tomography (micro-CT). Dimensions related to the cup wall (solid, lattice and overall thickness) were also measured. Roundness and roughness of the internal cup surface were analysed with coordinate measuring machine (CMM) and optical profilometry. Results SEM showed partially molten titanium beads on all cups, significantly smaller on Trident II (27 μm vs ~ 70 μm, p < 0.0001). We found a spread of pore sizes, with median values of 0.521, 0.841 and 1.004 mm for Trident II, Delta TT and Mpact, respectively. Trident II was also significantly less porous (63%, p < 0.0001) than the others (Delta TT 72.3%, Mpact 76.4%), and showed the thinnest lattice region of the cup wall (1.038 mm, p < 0.0001), while Mpact exhibited the thicker solid region (4.880 mm, p < 0.0044). Similar roundness and roughness of the internal cup surfaces were found. Conclusion This was the first study to compare the designs of different 3D printed cups. A variability in the morphology of the outer surface of the cups and lattice structures was found. The existence of titanium beads on 3D printed parts is a known by-product of the manufacturing process; however, their prevalence on acetabular cups used in patients is an interesting finding, since these beads may potentially be released in the body.


2021 ◽  
Vol 91 (11-12) ◽  
pp. 1409-1418
Author(s):  
Xiaoyu Cai ◽  
Bingfei Gu ◽  
Huazhou He

To improve body-type classification research and personalized clothing, this study adopted a research method of “three-dimensional (3D) scanning + photos” for the body-shape classification of young females’ waist–abdomen–hip. A total of 178 female college students were recruited for manual, photo and 3D body measurement to get the main body information. Based on the data acquired from 3D scanning, the corresponding heights, angles and other parameters of the waist, abdomen and hip were selected and used to analyze the human body in two respects of shape and height. Then the body-shape indexes and the height indexes were respectively analyzed, and 16 shape characteristic indicators and four height characteristic parameters affecting the waist, abdomen and hip were extracted. Three types in shape and two types in height were obtained, and the main classification rules of the waist–abdomen–hip shape were also concluded to identify the body type based on the body measurements extracted from body photos, which realized the automatic body-type identification based on body photos. It was of great practical significance to provide a basis for personalized customization of fast clothing and the subdivision of the human body shape, which could meet the individual customer’s requirements.


2019 ◽  
Vol 5 (2) ◽  
Author(s):  
Sarah Ghalayini ◽  
Hepi Hari Susapto ◽  
Sophie Hall ◽  
Kowther Kahin ◽  
Charlotte Hauser

Nanoparticles (NPs) have left their mark on the field of bioengineering. Fabricated from metallic, magnetic, and metal oxide materials, their applications include drug delivery, bioimaging, and cell labeling. However, as they enter the body, the question remains – where do they go after fulfilling their designated function? As most materials used to produce NPs are not naturally found in the body, they are not biodegradable and may accumulate overtime. There is a lack of comprehensive, long-term studies assessing the biodistribution of non-biodegradable NPs for even the most widely studied NPs. There is a clear need for NPs produced from natural materials capable of degradation in vivo. As peptides exist naturally within the human body, their non-toxic and biocompatible nature comes as no surprise. Ultrashort peptides are aliphatic peptides designed with three to seven amino acids capable of self-assembling into helical fibers within macromolecular structures. Using a microfluidics flow-focusing approach, we produced different peptide-based NPs that were then three-dimensional (3D) printed with our novel printer setup. Herein, we describe the preparation method of NPs from ultrashort self-assembling peptides and their morphology in both manual and 3D-printed hydrogels, thus suggesting that peptide NPs are capable of withstanding the stresses involved in the printing process


2015 ◽  
Vol 27 (1) ◽  
pp. 129-147 ◽  
Author(s):  
Sunmi Park ◽  
Yunja Nam ◽  
Kuengmi Choi

Purpose – The purpose of this paper is to develop a virtual body that resembles the customer’s body shape using only the minimum information provided by the customer and without requiring individually scanned data. Design/methodology/approach – The target of this study includes the three-dimensional scanned data of 91 senior women aged 60 or older and human body measurement data of 268 people. The parametric virtual body was generated in three steps: a basic virtual body, a trans-shaped virtual body, and a trans-sized virtual body. Findings – Using organic relationships found in the body shape factors of the lower body, this study developed an algorithm to generate elderly women’s parametric virtual lower body that is quick and reproducible. Having tested the reproducibility of the algorithm, the parametric virtual body showed excellent reproducibility vis-à-vis the personal scanned data in both the shape acceptability and size acceptability. Originality/value – Because virtual bodies in this study are based on the results of body shape analysis related to apparel design, those resembling customer body shapes can be quickly and accurately generated. In addition, because body shape information for target groups is provided to the clothing manufacturers, it will likely contribute significantly to enhancing clothes fitting.


Author(s):  
O. Faroon ◽  
F. Al-Bagdadi ◽  
T. G. Snider ◽  
C. Titkemeyer

The lymphatic system is very important in the immunological activities of the body. Clinicians confirm the diagnosis of infectious diseases by palpating the involved cutaneous lymph node for changes in size, heat, and consistency. Clinical pathologists diagnose systemic diseases through biopsies of superficial lymph nodes. In many parts of the world the goat is considered as an important source of milk and meat products.The lymphatic system has been studied extensively. These studies lack precise information on the natural morphology of the lymph nodes and their vascular and cellular constituent. This is due to using improper technique for such studies. A few studies used the SEM, conducted by cutting the lymph node with a blade. The morphological data collected by this method are artificial and do not reflect the normal three dimensional surface of the examined area of the lymph node. SEM has been used to study the lymph vessels and lymph nodes of different animals. No information on the cutaneous lymph nodes of the goat has ever been collected using the scanning electron microscope.


Author(s):  
Zhonghua Sun

Three-dimensional (3D) printing is increasingly used in medical applications with most of the studies focusing on its applications in medical education and training, pre-surgical planning and simulation, and doctor-patient communication. An emerging area of utilising 3D printed models lies in the development of cardiac computed tomography (CT) protocols for visualisation and detection of cardiovascular disease. Specifically, 3D printed heart and cardiovascular models have shown potential value in the evaluation of coronary plaques and coronary stents, aortic diseases and detection of pulmonary embolism. This review article provides an overview of the clinical value of 3D printed models in these areas with regard to the development of optimal CT scanning protocols for both diagnostic evaluation of cardiovascular disease and reduction of radiation dose. The expected outcomes are to encourage further research towards this direction.


Sign in / Sign up

Export Citation Format

Share Document