scholarly journals RIGOROUS STRIP ADJUSTMENT OF AIRBORNE LASERSCANNING DATA BASED ON THE ICP ALGORITHM

Author(s):  
P. Glira ◽  
N. Pfeifer ◽  
C. Briese ◽  
C. Ressl

Airborne Laser Scanning (ALS) is an efficient method for the acquisition of dense and accurate point clouds over extended areas. To ensure a gapless coverage of the area, point clouds are collected strip wise with a considerable overlap. The redundant information contained in these overlap areas can be used, together with ground-truth data, to re-calibrate the ALS system and to compensate for systematic measurement errors. This process, usually denoted as <i>strip adjustment</i>, leads to an improved georeferencing of the ALS strips, or in other words, to a higher data quality of the acquired point clouds. We present a fully automatic strip adjustment method that (a) uses the original scanner and trajectory measurements, (b) performs an on-the-job calibration of the entire ALS multisensor system, and (c) corrects the trajectory errors individually for each strip. Like in the Iterative Closest Point (ICP) algorithm, correspondences are established iteratively and directly between points of overlapping ALS strips (avoiding a time-consuming segmentation and/or interpolation of the point clouds). The suitability of the method for large amounts of data is demonstrated on the basis of an ALS block consisting of 103 strips.

2020 ◽  
Author(s):  
Tuomas Yrttimaa ◽  
Ninni Saarinen ◽  
Ville Luoma ◽  
Topi Tanhuanpää ◽  
Ville Kankare ◽  
...  

The feasibility of terrestrial laser scanning (TLS) in characterizing standing trees has been frequently investigated, while less effort has been put in quantifying downed dead wood using TLS. To advance dead wood characterization using TLS, we collected TLS point clouds and downed dead wood information from 20 sample plots (32 m x 32 m in size) located in southern Finland. This data set can be used in developing new algorithms for downed dead wood detection and characterization as well as for understanding spatial patterns of downed dead wood in boreal forests.


2020 ◽  
Vol 12 (5) ◽  
pp. 877
Author(s):  
Zhishuang Yang ◽  
Wanshou Jiang ◽  
Yaping Lin ◽  
Sander Oude Elberink

The labeling of point clouds is the fundamental task in airborne laser scanning (ALS) point clouds processing. Many supervised methods have been proposed for the point clouds classification work. Training samples play an important role in the supervised classification. Most of the training samples are generated by manual labeling, which is time-consuming. To reduce the cost of manual annotating for ALS data, we propose a framework that automatically generates training samples using a two-dimensional (2D) topographic map and an unsupervised segmentation step. In this approach, input point clouds, at first, are separated into the ground part and the non-ground part by a DEM filter. Then, a point-in-polygon operation using polygon maps derived from a 2D topographic map is used to generate initial training samples. The unsupervised segmentation method is applied to reduce the noise and improve the accuracy of the point-in-polygon training samples. Finally, the super point graph is used for the training and testing procedure. A comparison with the point-based deep neural network Pointnet++ (average F1 score 59.4%) shows that the segmentation based strategy improves the performance of our initial training samples (average F1 score 65.6%). After adding the intensity value in unsupervised segmentation, our automatically generated training samples have competitive results with an average F1 score of 74.8% for ALS data classification while using the ground truth training samples the average F1 score is 75.1%. The result shows that our framework is feasible to automatically generate and improve the training samples with low time and labour costs.


Author(s):  
S. Karam ◽  
M. Peter ◽  
S. Hosseinyalamdary ◽  
G. Vosselman

<p><strong>Abstract.</strong> The necessity for the modelling of building interiors has encouraged researchers in recent years to focus on improving the capturing and modelling techniques for such environments. State-of-the-art indoor mobile mapping systems use a combination of laser scanners and/or cameras mounted on movable platforms and allow for capturing 3D data of buildings’ interiors. As GNSS positioning does not work inside buildings, the extensively investigated Simultaneous Localisation and Mapping (SLAM) algorithms seem to offer a suitable solution for the problem. Because of the dead-reckoning nature of SLAM approaches, their results usually suffer from registration errors. Therefore, indoor data acquisition has remained a challenge and the accuracy of the captured data has to be analysed and investigated. In this paper, we propose to use architectural constraints to partly evaluate the quality of the acquired point cloud in the absence of any ground truth model. The internal consistency of walls is utilized to check the accuracy and correctness of indoor models. In addition, we use a floor plan (if available) as an external information source to check the quality of the generated indoor model. The proposed evaluation method provides an overall impression of the reconstruction accuracy. Our results show that perpendicularity, parallelism, and thickness of walls are important cues in buildings and can be used for an internal consistency check.</p>


Author(s):  
A. Novo ◽  
H. González-Jorge ◽  
J. Martínez-Sánchez ◽  
J. M. Fernández-Alonso ◽  
H. Lorenzo

Abstract. Forest spatial structure describes the relationships among different species in the same forest community. Automation in the monitoring of the structural forest changes and forest mapping is one of the main utilities of applications of modern geoinformatics methods. The obtaining objective information requires the use of spatial data derived from photogrammetry and remote sensing. This paper investigates the possibility of applying light detection and ranging (LiDAR) point clouds and geographic information system (GIS) analyses for automated mapping and detection changes in vegetation structure during a year of study. The research was conducted in an area of the Ourense Province (NWSpain). The airborne laser scanning (ALS) data, acquired in August 2019 and June of 2020, reveal detailed changes in forest structure. Based on ALS data the vegetation parameters will be analysed.To study the structural behaviour of the tree vegetation, the following parameters are used in each one of the sampling areas: (1) Relationship between the tree species present and their stratification; (2) Vegetation classification in fuel types; (3) Biomass (Gi); (4) Number of individuals per area; and (5) Canopy cover fraction (CCF). Besides, the results were compared with the ground truth data recollected in the study area.The development of a quantitative structural model based on Aerial Laser Scanning (ALS) point clouds was proposed to accurately estimate tree attributes automatically and to detect changes in forest structure. Results of statistical analysis of point cloud show the possibility to use UAV LiDAR data to characterize changes in the structure of vegetation.


2021 ◽  
Vol 13 (15) ◽  
pp. 2938
Author(s):  
Feng Li ◽  
Haihong Zhu ◽  
Zhenwei Luo ◽  
Hang Shen ◽  
Lin Li

Separating point clouds into ground and nonground points is an essential step in the processing of airborne laser scanning (ALS) data for various applications. Interpolation-based filtering algorithms have been commonly used for filtering ALS point cloud data. However, most conventional interpolation-based algorithms have exhibited a drawback in terms of retaining abrupt terrain characteristics, resulting in poor algorithmic precision in these regions. To overcome this drawback, this paper proposes an improved adaptive surface interpolation filter with a multilevel hierarchy by using a cloth simulation and relief amplitude. This method uses three hierarchy levels of provisional digital elevation model (DEM) raster surfaces with thin plate spline (TPS) interpolation to separate ground points from unclassified points based on adaptive residual thresholds. A cloth simulation algorithm is adopted to generate sufficient effective initial ground seeds for constructing topographic surfaces with high quality. Residual thresholds are adaptively constructed by the relief amplitude of the examined area to capture complex landscape characteristics during the classification process. Fifteen samples from the International Society for Photogrammetry and Remote Sensing (ISPRS) commission are used to assess the performance of the proposed algorithm. The experimental results indicate that the proposed method can produce satisfying results in both flat areas and steep areas. In a comparison with other approaches, this method demonstrates its superior performance in terms of filtering results with the lowest omission error rate; in particular, the proposed approach retains discontinuous terrain features with steep slopes and terraces.


2021 ◽  
Vol 13 (2) ◽  
pp. 261
Author(s):  
Francisco Mauro ◽  
Andrew T. Hudak ◽  
Patrick A. Fekety ◽  
Bryce Frank ◽  
Hailemariam Temesgen ◽  
...  

Airborne laser scanning (ALS) acquisitions provide piecemeal coverage across the western US, as collections are organized by local managers of individual project areas. In this study, we analyze different factors that can contribute to developing a regional strategy to use information from completed ALS data acquisitions and develop maps of multiple forest attributes in new ALS project areas in a rapid manner. This study is located in Oregon, USA, and analyzes six forest structural attributes for differences between: (1) synthetic (i.e., not-calibrated), and calibrated predictions, (2) parametric linear and semiparametric models, and (3) models developed with predictors computed for point clouds enclosed in the areas where field measurements were taken, i.e., “point-cloud predictors”, and models developed using predictors extracted from pre-rasterized layers, i.e., “rasterized predictors”. Forest structural attributes under consideration are aboveground biomass, downed woody biomass, canopy bulk density, canopy height, canopy base height, and canopy fuel load. Results from our study indicate that semiparametric models perform better than parametric models if no calibration is performed. However, the effect of the calibration is substantial in reducing the bias of parametric models but minimal for the semiparametric models and, once calibrations are performed, differences between parametric and semiparametric models become negligible for all responses. In addition, minimal differences between models using point-cloud predictors and models using rasterized predictors were found. We conclude that the approach that applies semiparametric models and rasterized predictors, which represents the easiest workflow and leads to the most rapid results, is justified with little loss in accuracy or precision even if no calibration is performed.


Author(s):  
Yuzhou Zhou ◽  
Ronggang Huang ◽  
Tengping Jiang ◽  
Zhen Dong ◽  
Bisheng Yang

2018 ◽  
Vol 7 (9) ◽  
pp. 342 ◽  
Author(s):  
Adam Salach ◽  
Krzysztof Bakuła ◽  
Magdalena Pilarska ◽  
Wojciech Ostrowski ◽  
Konrad Górski ◽  
...  

In this paper, the results of an experiment about the vertical accuracy of generated digital terrain models were assessed. The created models were based on two techniques: LiDAR and photogrammetry. The data were acquired using an ultralight laser scanner, which was dedicated to Unmanned Aerial Vehicle (UAV) platforms that provide very dense point clouds (180 points per square meter), and an RGB digital camera that collects data at very high resolution (a ground sampling distance of 2 cm). The vertical error of the digital terrain models (DTMs) was evaluated based on the surveying data measured in the field and compared to airborne laser scanning collected with a manned plane. The data were acquired in summer during a corridor flight mission over levees and their surroundings, where various types of land cover were observed. The experiment results showed unequivocally, that the terrain models obtained using LiDAR technology were more accurate. An attempt to assess the accuracy and possibilities of penetration of the point cloud from the image-based approach, whilst referring to various types of land cover, was conducted based on Real Time Kinematic Global Navigation Satellite System (GNSS-RTK) measurements and was compared to archival airborne laser scanning data. The vertical accuracy of DTM was evaluated for uncovered and vegetation areas separately, providing information about the influence of the vegetation height on the results of the bare ground extraction and DTM generation. In uncovered and low vegetation areas (0–20 cm), the vertical accuracies of digital terrain models generated from different data sources were quite similar: for the UAV Laser Scanning (ULS) data, the RMSE was 0.11 m, and for the image-based data collected using the UAV platform, it was 0.14 m, whereas for medium vegetation (higher than 60 cm), the RMSE from these two data sources were 0.11 m and 0.36 m, respectively. A decrease in the accuracy of 0.10 m, for every 20 cm of vegetation height, was observed for photogrammetric data; and such a dependency was not noticed in the case of models created from the ULS data.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3347 ◽  
Author(s):  
Zhishuang Yang ◽  
Bo Tan ◽  
Huikun Pei ◽  
Wanshou Jiang

The classification of point clouds is a basic task in airborne laser scanning (ALS) point cloud processing. It is quite a challenge when facing complex observed scenes and irregular point distributions. In order to reduce the computational burden of the point-based classification method and improve the classification accuracy, we present a segmentation and multi-scale convolutional neural network-based classification method. Firstly, a three-step region-growing segmentation method was proposed to reduce both under-segmentation and over-segmentation. Then, a feature image generation method was used to transform the 3D neighborhood features of a point into a 2D image. Finally, feature images were treated as the input of a multi-scale convolutional neural network for training and testing tasks. In order to obtain performance comparisons with existing approaches, we evaluated our framework using the International Society for Photogrammetry and Remote Sensing Working Groups II/4 (ISPRS WG II/4) 3D labeling benchmark tests. The experiment result, which achieved 84.9% overall accuracy and 69.2% of average F1 scores, has a satisfactory performance over all participating approaches analyzed.


Sign in / Sign up

Export Citation Format

Share Document