scholarly journals PERFORMANCE CHARACTERISTIC MEMS-BASED IMUs FOR UAVs NAVIGATION

Author(s):  
H. A. Mohamed ◽  
J. M. Hansen ◽  
M. M. Elhabiby ◽  
N. El-Sheimy ◽  
A. B. Sesay

Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs) are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS) or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK), and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS) signal outage.

BioTechniques ◽  
2008 ◽  
Vol 45 (4) ◽  
pp. 451-456 ◽  
Author(s):  
Michael Serra ◽  
Amy Chan ◽  
Maya Dubey ◽  
Thomas B. Shea

2020 ◽  
Author(s):  
Rogério P. Menezes Filho ◽  
Felipe O. Silva ◽  
Leonardo A. Vieira ◽  
Lucas P. S. Paiva ◽  
Gustavo S. Carvalho

Humans have always had the necessity of estimating their location in space for various reasons, e.g. hunting, traveling, sailing, battling, etc. Today, many other areas also demand that information, such as aviation, agriculture, multiple smartphone applications, law enforcement, and even film industry, to mention but a few. Estimating position and orientation is known as navigation, and the means to achieve it are called navigation systems. Each approach has its pros and cons, but sometimes it is possible to combine them into an improved architecture. For instance, inertial sensors (i.e. accelerometers and gyroscopes) can be integrated with magnetometers, producing an Attitude and Heading Reference System (AHRS); this process is referred to as sensor fusion. However, before sensors can be used to produce the navigation solution, calibration is often necessary, especially for low-cost devices. In this study,we perform the calibration of a triaxial consumer-grade magnetometer via an extended two-step methodology, correct small mistakes present in the original paper, and evaluate the technique in a restricted motion scenario. This technique can be implemented in-field, simply by rotating the sensors to multiple orientations; the only external information necessary is the local Earth's magnetic field density, easily estimated through reliable models. The error parameters, i.e. biases, scale factors, and misalignments, are indirectly estimated via a least squares algorithm. The calibration is first performed through software simulation, followed by hardware implementation to validate the results.


1974 ◽  
Vol 4 (2) ◽  
pp. 250-254 ◽  
Author(s):  
P. A. Tang ◽  
K. G. McNaughton ◽  
T. A. Black

Two temperature sensing circuits using silicon diodes and integrated circuit components are described. They are intended for use with data acquisition systems and are suitable for field or laboratory applications. Both can be constructed by persons without electronic training and have features of simplicity, low cost, and high accuracy.


2013 ◽  
Vol 332 ◽  
pp. 119-123
Author(s):  
Dorina Purcaru ◽  
Anca Purcaru

The interface presented in this paper performs a synchronized sampling of all eight common-mode or differential analog inputs with a high sampling rate. This is a low cost interface, entirely controlled by the PC104 CPU. The paper is focused on design and operation aspects of the synchronized analog-to-digital conversion module. This interface is recommended for high speed data acquisition systems and finds its utility in energetic systems, for monitoring the power quality and for recording different specific transient events. Some programmable electronic modules which perform analog and digital signal acquisition in energetic systems already contain a PC104 interface with synchronized sampling of analog inputs; some experimental results are also presented in this paper.


2002 ◽  
Vol 55 (2) ◽  
pp. 225-240 ◽  
Author(s):  
Stephen Scott-Young ◽  
Allison Kealy

The increasing availability of small, low-cost GPS receivers has established a firm growth in the production of Location-Based Services (LBS). LBS, such as in-car navigation systems, are not necessarily reliant on high accuracy but a continuous positioning service. When available, the accuracy provided by the standard positioning service (SPS) of 30 metres, 95% of the time is often acceptable. The reality is, however, that GPS does not work in all situations, and it is therefore common to integrate GPS with additional sensors. The use of low-cost inertial sensors alone during GPS signal outage is severely restricted due to the accumulation of errors that is inherent with such dead reckoning (DR) systems. Through the integration of spatial information with real-time positioning sensors, intelligence can be added to the land mobile navigation solution. The information contained within a Geographical Information System (GIS) provides additional observations that can be used to improve the navigation result. With this approach, the solution is not dependent on the performance capabilities of the navigation sensors alone. This enables the use of lower accuracy navigation devices, allowing low-cost systems to provide a sustained, viable navigation solution despite long-term GPS outages. Practical results are presented comparing solutions obtained from a hand-held GPS receiver to a gyroscope and odometer.


2013 ◽  
Vol 325-326 ◽  
pp. 926-929 ◽  
Author(s):  
Dorina Purcaru ◽  
Cornelia Gordan ◽  
Romulus Reiz ◽  
Anca Purcaru

The interface presented in this paper is recommended for high speed data acquisition systems; it performs a synchronized sampling of all common-mode or differential analog inputs with a high sampling rate. This is a low cost interface, entirely controlled by the PC104 CPU. Programmable electronic modules that contain such PC104 interfaces can be found running in the energetic system from Romania; these dedicated equipments perform the analog and digital signal acquisition for monitoring and recording different specific transient events. Some experimental results obtained using the disturbance monitoring device PC-08/104 are also presented in this paper.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6959
Author(s):  
Idan Zak ◽  
Reuven Katz ◽  
Itzik Klein

Inertial navigation systems provides the platform’s position, velocity, and attitude during its operation. As a dead-reckoning system, it requires initial conditions to calculate the navigation solution. While initial position and velocity vectors are provided by external means, the initial attitude can be determined using the system’s inertial sensors in a process known as coarse alignment. When considering low-cost inertial sensors, only the initial roll and pitch angles can be determined using the accelerometers measurements. The accuracy, as well as time required for the for the coarse alignment process are critical for the navigation solution accuracy, particularly for pure-inertial scenarios, because of the navigation solution drift. In this paper, a machine learning framework for the stationary coarse alignment stage is proposed. To that end, classical machine learning approaches are used in a two-stage approach to regress the roll and pitch angles. Alignment results obtained both in simulations and field experiments, using a smartphone, shows the benefits of using the proposed approach instead of the commonly used analytical coarse alignment procedure.


2008 ◽  
Author(s):  
Paolo Romano ◽  
Diego Rughetti ◽  
Francesco Quaglia ◽  
Bruno Ciciani

Sign in / Sign up

Export Citation Format

Share Document