scholarly journals A REDUNDANT GNSS-INS LOW-COST UAV NAVIGATION SOLUTION FOR PROFESSIONAL APPLICATIONS

Author(s):  
J. Navarro ◽  
M. E. Parés ◽  
I. Colomina ◽  
G. Bianchi ◽  
S. Pluchino ◽  
...  

This paper presents the current results for the FP7 GINSEC project. Its goal is to build a pre-commercial prototype of a low-cost, accurate and reliable system for the professional UAV market. <i>Low-cost</i>, in this context, stands for the use of sensors in the most affordable segment of the market, especially MEMS IMUs and GNSS receivers. <i>Reliability</i> applies to the ability of the autopilot to cope with situations where unfavourable GNSS reception conditions or strong electromagnetic fields make the computation of the position and / or attitude of the UAV difficult. <i>Professional</i> and <i>accurate</i> mean that, at least using post-processing techniques as PPP, it will be possible to reach cm-level precisions that open the door to a range of applications demanding high levels of quality in positioning, as precision agriculture or mapping. To achieve such goal, a rigorous sensor error modelling approach, the use of redundant IMUs and a dual-GNSS receiver setup, together with close-coupling techniques and an extended Kalman filter with self-analysis capabilities have been used. Although the project is not yet complete, the results obtained up to now prove the feasibility of the aforementioned goal, especially in those aspects related to position determination. Research work is still undergoing to estimate the heading using a dual-GNNS receiver setup; preliminary results prove the validity of this approach for relatively long baselines, although positive results are expected when these are shorter than 1 m – which is a necessary requisite for small-sized UAVs.

Author(s):  
I. Aicardi ◽  
S. Angeli ◽  
N. Grasso ◽  
A. M. Lingua ◽  
P. Maschio

Abstract. Climate change is already affecting the entire world, with extreme weather conditions such as drought, heat waves, heavy rain, floods and landslides becoming more frequent, including Europe. In according to Paris agreement and relative European announcement of Carbon neutrality (by 2050), the saving of water and energy supplies is a fundamental aspect in the management of resources in production, sports, hospitality facilities and so on. Some methodologies for the optimization of the consumption of natural resources are required. This article describes an activity aimed at measuring, monitoring and analysing the thickness of the snowpack on the ski slopes during the winter season to permit a sustainable approach of snowmaking in alpine ski areas . The authors propose a methodology based on the integration of multitemporal surface (ground/snow) survey by Autonomous Aerial Vehicle (AAV) and low cost GNSS receivers mounted on snow groomers for a RTK (Real Time Kinematic) solution. To obtain a complete snow surface digital models with poor detailed images on ski slopes, some pre-processing techniques have been analysed to locally improve contrast and details with a local high pass filtering. The methodology has been employed in two study areas (Limone Piemonte, Prato Nevoso) located in the province of Cuneo, in the southern alpine area of Piedmont.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 924 ◽  
Author(s):  
Pietro Catania ◽  
Antonio Comparetti ◽  
Pierluigi Febo ◽  
Giuseppe Morello ◽  
Santo Orlando ◽  
...  

Global Navigation Satellite Systems (GNSS) allow the determination of the 3D position of a point on the Earth’s surface by measuring the distance from the receiver antenna to the orbital position of at least four satellites. Selecting and buying a GNSS receiver, depending on farm needs, is the first step for implementing precision agriculture. The aim of this work is to compare the positioning accuracy of four GNSS receivers, different for technical features and working modes: L1/L2 frequency survey-grade Real-Time Kinematic (RTK)-capable Stonex S7-G (S7); L1 frequency RTK-capable Stonex S5 (S5); L1 frequency Thales MobileMapper Pro (TMMP); low-cost L1 frequency Quanum GPS Logger V2 (QLV2). In order to evaluate the positioning accuracy of these receivers, i.e., the distance of the determined points from a reference trajectory, different tests, distinguished by the use or not of Real-Time Kinematic (RTK) differential correction data and/or an external antenna, were carried out. The results show that all satellite receivers tested carried out with the external antenna had an improvement in positioning accuracy. The Thales MobileMapper Pro satellite receiver showed the worst positioning accuracy. The low-cost Quanum GPS Logger V2 receiver surprisingly showed an average positioning error of only 0.550 m. The positioning accuracy of the above-mentioned receiver was slightly worse than that obtained using Stonex S7-G without the external antenna and differential correction (maximum positioning error 0.749 m). However, this accuracy was even better than that recorded using Stonex S5 without differential correction, both with and without the external antenna (average positioning error of 0.962 m and 1.368 m).


Detection and reorganization of text may save a lot of time while reproducing old books text and its chapters. This is really challenging research topic as different books may have different font types and styles. The digital books and eBooks reading habit is increasing day by day and new documents are producing every day. So in order to boost the process the text reorganization using digital image processing techniques can be used. This research work is using hybrid algorithms and morphological algorithms. For sample we have taken an letter pad where the text and images are separated using algorithms. The another objective of this research is to increase the accuracy of recognized text and produce accurate results. This research worked on two different concepts, first is concept of Pixel-level thresholding processing and another one is Otsu Method thresholding.


2020 ◽  
Vol 14 (2) ◽  
pp. 167-175
Author(s):  
Li Zhang ◽  
Volker Schwieger

AbstractThe investigations on low-cost single frequency GNSS receivers at the Institute of Engineering Geodesy (IIGS) show that u-blox GNSS receivers combined with low-cost antennas and self-constructed L1-optimized choke rings can reach an accuracy which almost meets the requirements of geodetic applications (see Zhang and Schwieger [25]). However, the quality (accuracy and reliability) of low-cost GNSS receiver data should still be improved, particularly in environments with obstructions. The multipath effects are a major error source for the short baselines. The ground plate or the choke ring ground plane can reduce the multipath signals from the horizontal reflector (e. g. ground). However, the shieldings cannot reduce the multipath signals from the vertical reflectors (e. g. walls).Because multipath effects are spatially and temporally correlated, an algorithm is developed for reducing the multipath effect by considering the spatial correlations of the adjoined stations (see Zhang and Schwieger [24]). In this paper, an algorithm based on the temporal correlations will be introduced. The developed algorithm is based on the periodic behavior of the estimated coordinates and not on carrier phase raw data, which is easy to use. Because, for the users, coordinates are more accessible than the raw data. The multipath effect can cause periodic oscillations but the periods change over time. Besides this, the multipath effect’s influence on the coordinates is a mixture of different multipath signals from different satellites and different reflectors. These two properties will be used to reduce the multipath effect. The algorithm runs in two steps and iteratively. Test measurements were carried out in a multipath intensive environment; the accuracies of the measurements are improved by about 50 % and the results can be delivered in near-real-time (in ca. 30 minutes), therefore the algorithm is suitable for structural health monitoring applications.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3515
Author(s):  
Sung-Ho Sim ◽  
Yoon-Su Jeong

As the development of IoT technologies has progressed rapidly recently, most IoT data are focused on monitoring and control to process IoT data, but the cost of collecting and linking various IoT data increases, requiring the ability to proactively integrate and analyze collected IoT data so that cloud servers (data centers) can process smartly. In this paper, we propose a blockchain-based IoT big data integrity verification technique to ensure the safety of the Third Party Auditor (TPA), which has a role in auditing the integrity of AIoT data. The proposed technique aims to minimize IoT information loss by multiple blockchain groupings of information and signature keys from IoT devices. The proposed technique allows IoT information to be effectively guaranteed the integrity of AIoT data by linking hash values designated as arbitrary, constant-size blocks with previous blocks in hierarchical chains. The proposed technique performs synchronization using location information between the central server and IoT devices to manage the cost of the integrity of IoT information at low cost. In order to easily control a large number of locations of IoT devices, we perform cross-distributed and blockchain linkage processing under constant rules to improve the load and throughput generated by IoT devices.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5257
Author(s):  
Franc Dimc ◽  
Polona Pavlovčič-Prešeren ◽  
Matej Bažec

Robust autonomous driving, as long as it relies on satellite-based positioning, requires carrier-phase-based algorithms, among other types of data sources, to obtain precise and true positions, which is also primarily true for the use of GNSS geodetic receivers, but also increasingly true for mass-market devices. The experiment was conducted under line-of-sight conditions on a straight road during a period of no traffic. The receivers were positioned on the roof of a car travelling at low speed in the presence of a static jammer, while kinematic relative positioning was performed with the static reference base receiver. Interference mitigation techniques in the GNSS receivers used, which were unknown to the authors, were compared using (a) the observed carrier-to-noise power spectral density ratio as an indication of the receivers’ ability to improve signal quality, and (b) the post-processed position solutions based on RINEX-formatted data. The observed carrier-to-noise density generally exerts the expected dependencies and leaves space for comparisons of applied processing abilities in the receivers, while conclusions on the output data results comparison are limited due to the non-synchronized clocks of the receivers. According to our current and previous results, none of the GNSS receivers used in the experiments employs an effective type of complete mitigation technique adapted to the chirp jammer.


2021 ◽  
Author(s):  
Tomasz Hadas ◽  
Grzegorz Marut ◽  
Jan Kapłon ◽  
Witold Rohm

&lt;p&gt;The dynamics of water vapor distribution in the troposphere, measured with Global Navigation Satellite Systems (GNSS), is a subject of weather research and climate studies. With GNSS, remote sensing of the troposphere in Europe is performed continuously and operationally under the E-GVAP (http://egvap.dmi.dk/) program with more than 2000 permanent stations. These data are one of the assimilation system component of mesoscale weather prediction models (10 km scale) for many nations across Europe. However, advancing precise local forecasts for severe weather requires high resolution models and observing system.&amp;#160; &amp;#160;Further densification of the tracking network, e.g. in urban or mountain areas, will be costly when considering geodetic-grade equipment. However, the rapid development of GNSS-based applications results in a dynamic release of mass-market GNSS receivers. It has been demonstrated that post-processing of GPS-data from a dual-frequency low-cost receiver allows retrieving ZTD with high accuracy. Although low-cost receivers are a promising solution to the problem of densifying GNSS networks for water vapor monitoring, there are still some technological limitations and they require further development and calibration.&lt;/p&gt;&lt;p&gt;We have developed a low-cost GNSS station, dedicated to real-time GNSS meteorology, which provides GPS, GLONASS and Galileo dual-frequency observations either in RINEX v3.04 format or via RTCM v3.3 stream, with either Ethernet or GSM data transmission. The first two units are deployed in a close vicinity of permanent station WROC, which belongs to the International GNSS Service (IGS) network. Therefore, we compare results from real-time and near real-time processing of GNSS observations from a low-cost unit with IGS Final products. We also investigate the impact of replacing a standard patch antenna with an inexpensive survey-grade antenna. Finally, we deploy a local network of low-cost receivers in and around the city of Wroclaw, Poland, in order to analyze the dynamics of troposphere delay at a very high spatial resolution.&lt;/p&gt;&lt;p&gt;As a measure of accuracy, we use the standard deviation of ZTD differences between estimated ZTD and IGS Final product. For the near real-time mode, that accuracy is 5&amp;#160;mm and 6 mm, for single- (L1) and dual-frequency (L1/L5,E5b) solution, respectively. Lower accuracy of the dual-frequency relative solution we justify by the missing antenna phase center correction model for L5 and E5b frequencies. With the real-time Precise Point Positioning technique, we estimate ZTD with the accuracy of 7.5 &amp;#8211; 8.6 mm. After antenna replacement, the accuracy is improved almost by a factor of 2 (to 4.1 mm), which is close to the 3.1&amp;#160;mm accuracy which we obtain in real-time using data from the WROC station.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document