scholarly journals UAV DATA PROCESSING FOR RAPID MAPPING ACTIVITIES

Author(s):  
W. Tampubolon ◽  
W. Reinhardt

During disaster and emergency situations, geospatial data plays an important role to serve as a framework for decision support system. As one component of basic geospatial data, large scale topographical maps are mandatory in order to enable geospatial analysis within quite a number of societal challenges. <br><br> The increasing role of geo-information in disaster management nowadays consequently needs to include geospatial aspects on its analysis. Therefore different geospatial datasets can be combined in order to produce reliable geospatial analysis especially in the context of disaster preparedness and emergency response. A very well-known issue in this context is the fast delivery of geospatial relevant data which is expressed by the term “Rapid Mapping”. <br><br> Unmanned Aerial Vehicle (UAV) is the rising geospatial data platform nowadays that can be attractive for modelling and monitoring the disaster area with a low cost and timely acquisition in such critical period of time. Disaster-related object extraction is of special interest for many applications. <br><br> In this paper, UAV-borne data has been used for supporting rapid mapping activities in combination with high resolution airborne Interferometric Synthetic Aperture Radar (IFSAR) data. A real disaster instance from 2013 in conjunction with Mount Sinabung eruption, Northern Sumatra, Indonesia, is used as the benchmark test for the rapid mapping activities presented in this paper. On this context, the reliable IFSAR dataset from airborne data acquisition in 2011 has been used as a comparable dataset for accuracy investigation and assessment purpose in 3 D reconstructions. After all, this paper presents a proper geo-referencing and feature extraction method of UAV data to support rapid mapping activities.

Author(s):  
Deidre Hahn ◽  
Jessica Block ◽  
Mark Keith ◽  
Ajay Vinze

Real time collaboration solutions are critical during a large scale emergency situation and necessitate the coordination of multiple disparate groups. Collaborative technologies may be valuable in the planning and execution of disaster preparedness and response. Yet, research suggests that specific collaborative technologies, such as group decision support systems, are not often leveraged for decision-making during real time emergency situations in the United States. In this chapter, we propose a theoretical model of the impact of disaster immediacy and collaboration systems on group processes and outcomes. Using a 3D model of the dimensions of space, time, and situation, we explore media richness and group polarization within the context of collaboration technologies and disaster situations. We also present the next generation of collaboration technology extensions in order to address the need for more contemporary decisional settings. This set of principles and theories suggest how collaborative technologies may be positioned to better manage future disasters.


2020 ◽  
Vol 28 (3) ◽  
pp. 293-304
Author(s):  
Amr Elsheshtawy ◽  
Larisa A. Gavrilova ◽  
Anatoly N. Limonov ◽  
Mohamed Elshewy

The materials obtained from the unmanned aerial vehicle (UAV) are used to solve many problems, including large-scale mapping and monitoring of linear objects, as well as the ecological situation and monitoring of emergency situations. The promptly obtained photographic materials make it possible to reveal the consequences of man-made human impact associated with degradation of the soil cover, flooding of lands, salinization and pollution of the soil layer, and changes in the vegetation cover. Control points are used for absolute orientation of the generated models in the most projects of photogrammetric processing of aerial photos and images obtained from UAVs. In areas with low contour, before aerial survey, targeting is carried out in the required zones. The research is devoted to the study of the influence of the shape of ground targets on the accuracy of photogrammetric processing. It involved three different types of ground targets located on the land cover along the survey path at a distance not exceeding 1 m from each other. The targets were used as ground control points in the photogrammetric processing of the materials from the UAV. Two three-stripe photographic surveys of the 900 m long track were carried out: with UAV DJI PHANTOM 4 PRO camera FC6310 at a scale of 1:3400 and ground resolution of 1 cm and with the DJI Mavic PRO UAV camera FC220 at a scale of 1:12 700 and ground resolution of 2 cm. In both cases, the direction of flight is north - south, 36 targets were included in the photogrammetric processing. In the first case, 502 images were processed, in the second - 152. The photogrammetric processing for the orthophoto mosaic generation was carried out using the Agisoft Photo Scan Professional software. Four different contrasting sites in the study area were selected for the study: green grass, dry grass, clay, sand. Accuracy was assessed according to two criteria: 1) the degree of visualization of the target on the images; 2) the accuracy of the orthophoto mosaic, generated using various targets.


2020 ◽  
Author(s):  
Elizabeth Passey ◽  
Giles Hammond ◽  
Steven Bramsiepe ◽  
Abhinav Prasad ◽  
Richard Middlemiss ◽  
...  

&lt;p&gt;Gravimetry allows us to study sub-surface structures remotely by measuring changes in Earth's surface gravitational field and using this data to infer the density of geological structures. Of its wide range of applications, it is mostly used in the oil and gas exploration industry, volcanology, civil engineering and even archaeological studies. Airborne gravimetry is a vital method of conducting a spatial gravimetric survey in areas which are difficult to access by foot, such as mountains. Generally, sensors are modified for air crafts platforms by installing them on large gimbal systems, or a strap-down gravimeter can be used as a lower-cost alternative. Now, a new MEMs gravimeter called &amp;#8220;Wee-g&amp;#8221; is enabling the development of a system to deploy the gravimeter on an unmanned aerial vehicle (UAV or drone). Wee-g was first developed with the objective of developing a low-cost MEMS accelerometer for gravimetric use which could be manufactured on a large scale. In 2016, Wee-g was used to measure Earth tides - the elastic deformation of the Earth caused by gravitational fields of the Moon and Sun. Since then, the device electronics have been miniaturised to make the system portable and has been tested at the Campsie Hills just north of Glasgow. Work is underway to build an isolation platform with active stabilisation on which the Wee-g can be mounted to be deployed on a drone which will reduce airborne surveys costs further and allow for more airborne gravimetric surveys to be carried out in remote locations.&lt;/p&gt;


2020 ◽  
Vol 9 (6) ◽  
pp. 403
Author(s):  
Xueyan Zhang

China’s rural population has declined markedly with the acceleration of urbanization and industrialization, but the area under rural homesteads has continued to expand. Proper rural land use and management require large-scale, efficient, and low-cost rural residential surveys; however, such surveys are time-consuming and difficult to accomplish. Unmanned aerial vehicle (UAV) technology coupled with a deep learning architecture and 3D modelling can provide a potential alternative to traditional surveys for gathering rural homestead information. In this study, a method to estimate the village-level homestead area, a 3D-based building height model (BHM), and the number of building floors based on UAV imagery and the U-net algorithm was developed, and the respective estimation accuracies were found to be 0.92, 0.99, and 0.89. This method is rapid and inexpensive compared to the traditional time-consuming and costly household surveys, and, thus, it is of great significance to the ongoing use and management of rural homestead information, especially with regards to the confirmation of homestead property rights in China. Further, the proposed combination of UAV imagery and U-net technology may have a broader application in rural household surveys, as it can provide more information for decision-makers to grasp the current state of the rural socio-economic environment.


Author(s):  
H. Fazeli ◽  
F. Samadzadegan ◽  
F. Dadrasjavan

During disaster and emergency situations, 3D geospatial data can provide essential information for decision support systems. The utilization of geospatial data using digital surface models as a basic reference is mandatory to provide accurate quick emergency response in so called rapid mapping activities. The recipe between accuracy requirements and time restriction is considered critical in this situations. UAVs as alternative platforms for 3D point cloud acquisition offer potentials because of their flexibility and practicability combined with low cost implementations. Moreover, the high resolution data collected from UAV platforms have the capabilities to provide a quick overview of the disaster area. The target of this paper is to experiment and to evaluate a low-cost system for generation of point clouds using imagery collected from a low altitude small autonomous UAV equipped with customized single frequency RTK module. The customized multi-rotor platform is used in this study. Moreover, electronic hardware is used to simplify user interaction with the UAV as RTK-GPS/Camera synchronization, and beside the synchronization, lever arm calibration is done. The platform is equipped with a Sony NEX-5N, 16.1-megapixel camera as imaging sensor. The lens attached to camera is ZEISS optics, prime lens with F1.8 maximum aperture and 24 mm focal length to deliver outstanding images. All necessary calibrations are performed and flight is implemented over the area of interest at flight height of 120 m above the ground level resulted in 2.38 cm GSD. Earlier to image acquisition, 12 signalized GCPs and 20 check points were distributed in the study area and measured with dualfrequency GPS via RTK technique with horizontal accuracy of &lt;i&gt;&sigma;&lt;/i&gt; = 1.5 &lt;i&gt;cm&lt;/i&gt; and vertical accuracy of &lt;i&gt;&sigma;&lt;/i&gt; = 2.3 &lt;i&gt;cm&lt;/i&gt;. results of direct georeferencing are compared to these points and experimental results show that decimeter accuracy level for 3D points cloud with proposed system is achievable, that is suitable for 3D rapid mapping applications.


Author(s):  
W. Tampubolon ◽  
W. Reinhardt

Normally, in order to provide high resolution 3 Dimension (3D) geospatial data, large scale topographical mapping needs input from conventional airborne campaigns which are in Indonesia bureaucratically complicated especially during legal administration procedures i.e. security clearance from military/defense ministry. This often causes additional time delays besides technical constraints such as weather and limited aircraft availability for airborne campaigns. Of course the geospatial data quality is an important issue for many applications. The increasing demand of geospatial data nowadays consequently requires high resolution datasets as well as a sufficient level of accuracy. Therefore an integration of different technologies is required in many cases to gain the expected result especially in the context of disaster preparedness and emergency response. Another important issue in this context is the fast delivery of relevant data which is expressed by the term “Rapid Mapping”. <br><br> In this paper we present first results of an on-going research to integrate different data sources like space borne radar and optical platforms. Initially the orthorectification of Very High Resolution Satellite (VHRS) imagery i.e. SPOT-6 has been done as a continuous process to the DEM generation using TerraSAR-X/TanDEM-X data. The role of Ground Control Points (GCPs) from GNSS surveys is mandatory in order to fulfil geometrical accuracy. In addition, this research aims on providing suitable processing algorithm of space borne data for large scale topographical mapping as described in section 3.2. <br><br> Recently, radar space borne data has been used for the medium scale topographical mapping e.g. for 1:50.000 map scale in Indonesian territories. The goal of this on-going research is to increase the accuracy of remote sensing data by different activities, e.g. the integration of different data sources (optical and radar) or the usage of the GCPs in both, the optical and the radar satellite data processing. Finally this results will be used in the future as a reference for further geospatial data acquisitions to support topographical mapping in even larger scales up to the 1:10.000 map scale.


Author(s):  
H. Fazeli ◽  
F. Samadzadegan ◽  
F. Dadrasjavan

During disaster and emergency situations, 3D geospatial data can provide essential information for decision support systems. The utilization of geospatial data using digital surface models as a basic reference is mandatory to provide accurate quick emergency response in so called rapid mapping activities. The recipe between accuracy requirements and time restriction is considered critical in this situations. UAVs as alternative platforms for 3D point cloud acquisition offer potentials because of their flexibility and practicability combined with low cost implementations. Moreover, the high resolution data collected from UAV platforms have the capabilities to provide a quick overview of the disaster area. The target of this paper is to experiment and to evaluate a low-cost system for generation of point clouds using imagery collected from a low altitude small autonomous UAV equipped with customized single frequency RTK module. The customized multi-rotor platform is used in this study. Moreover, electronic hardware is used to simplify user interaction with the UAV as RTK-GPS/Camera synchronization, and beside the synchronization, lever arm calibration is done. The platform is equipped with a Sony NEX-5N, 16.1-megapixel camera as imaging sensor. The lens attached to camera is ZEISS optics, prime lens with F1.8 maximum aperture and 24 mm focal length to deliver outstanding images. All necessary calibrations are performed and flight is implemented over the area of interest at flight height of 120 m above the ground level resulted in 2.38 cm GSD. Earlier to image acquisition, 12 signalized GCPs and 20 check points were distributed in the study area and measured with dualfrequency GPS via RTK technique with horizontal accuracy of <i>&sigma;</i> = 1.5 <i>cm</i> and vertical accuracy of <i>&sigma;</i> = 2.3 <i>cm</i>. results of direct georeferencing are compared to these points and experimental results show that decimeter accuracy level for 3D points cloud with proposed system is achievable, that is suitable for 3D rapid mapping applications.


2020 ◽  
Vol 52 ◽  
pp. 55-61
Author(s):  
Ettore Potente ◽  
Cosimo Cagnazzo ◽  
Alessandro Deodati ◽  
Giuseppe Mastronuzzi

1987 ◽  
Vol 19 (5-6) ◽  
pp. 701-710 ◽  
Author(s):  
B. L. Reidy ◽  
G. W. Samson

A low-cost wastewater disposal system was commissioned in 1959 to treat domestic and industrial wastewaters generated in the Latrobe River valley in the province of Gippsland, within the State of Victoria, Australia (Figure 1). The Latrobe Valley is the centre for large-scale generation of electricity and for the production of pulp and paper. In addition other industries have utilized the brown coal resource of the region e.g. gasification process and char production. Consequently, industrial wastewaters have been dominant in the disposal system for the past twenty-five years. The mixed industrial-domestic wastewaters were to be transported some eighty kilometres to be treated and disposed of by irrigation to land. Several important lessons have been learnt during twenty-five years of operating this system. Firstly the composition of the mixed waste stream has varied significantly with the passage of time and the development of the industrial base in the Valley, so that what was appropriate treatment in 1959 is not necessarily acceptable in 1985. Secondly the magnitude of adverse environmental impacts engendered by this low-cost disposal procedure was not imagined when the proposal was implemented. As a consequence, clean-up procedures which could remedy the adverse effects of twenty-five years of impact are likely to be costly. The question then may be asked - when the total costs including rehabilitation are considered, is there really a low-cost solution for environmentally safe disposal of complex wastewater streams?


Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 90-92
Author(s):  
Kae Doki ◽  
Yuki Funabora ◽  
Shinji Doki

Every day we are seeing an increasing number of robots being employed in our day-to-day lives. They are working in factories, cleaning our houses and may soon be chauffeuring us around in vehicles. The affordability of drones too has come down and now it is conceivable for most anyone to own a sophisticated unmanned aerial vehicle (UAV). While fun to fly, these devices also represent powerful new tools for several industries. Anytime an aerial view is needed for a planning, surveillance or surveying, for example, a UAV can be deployed. Further still, equipping these vehicles with an array of sensors, for climate research or mapping, increases their capability even more. This gives companies, governments or researchers a cheap and safe way to collect vast amounts of data and complete tasks in remote or dangerous areas that were once impossible to reach. One area UAVs are proving to be particularly useful is infrastructure inspection. In countries all over the world large scale infrastructure projects like dams and bridges are ageing and in need of upkeep. Identifying which ones and exactly where they are in need of patching is a huge undertaking. Not only can this work be dangerous, requiring trained inspectors to climb these megaprojects, it is incredibly time consuming and costly. Enter the UAVs. With a fleet of specially equipped UAVs and a small team piloting them and interpreting the data they bring back the speed and safety of this work increases exponentially. The promise of UAVs to overturn the infrastructure inspection process is enticing, but there remain several obstacles to overcome. One is achieving the fine level of control and positioning required to navigate the robots around 3D structures for inspection. One can imagine that piloting a small UAV underneath a huge highway bridge without missing a single small crack is quite difficult, especially when the operators are safely on the ground hundreds of meters away. To do this knowing exactly where the vehicle is in space becomes a critical variable. The job can be made even easier if a flight plan based on set waypoints can be pre-programmed and followed autonomously by the UAV. It is exactly this problem that Dr Kae Doki from the Department of Electrical Engineering at Aichi Institute of Technology, and collaborators are focused on solving.


Sign in / Sign up

Export Citation Format

Share Document