scholarly journals VOLUME BASED DTM GENERATION FROM VERY HIGH RESOLUTION PHOTOGRAMMETRIC DSMS

Author(s):  
B. Piltz ◽  
S. Bayer ◽  
A. M. Poznanska

In this paper we propose a new algorithm for digital terrain (DTM) model reconstruction from very high spatial resolution digital surface models (DSMs). It represents a combination of multi-directional filtering with a new metric which we call <i>normalized volume above ground</i> to create an above-ground mask containing buildings and elevated vegetation. This mask can be used to interpolate a ground-only DTM. The presented algorithm works fully automatically, requiring only the processing parameters <i>minimum height</i> and <i>maximum width</i> in metric units. Since slope and breaklines are not decisive criteria, low and smooth and even very extensive flat objects are recognized and masked. The algorithm was developed with the goal to generate the normalized DSM for automatic 3D building reconstruction and works reliably also in environments with distinct hillsides or terrace-shaped terrain where conventional methods would fail. A quantitative comparison with the ISPRS data sets <i>Potsdam</i> and <i>Vaihingen</i> show that 98-99% of all building data points are identified and can be removed, while enough ground data points (~66%) are kept to be able to reconstruct the ground surface. Additionally, we discuss the concept of <i>size dependent height thresholds</i> and present an efficient scheme for pyramidal processing of data sets reducing time complexity to linear to the number of pixels, <i>O(WH)</i>.

Author(s):  
B. Piltz ◽  
S. Bayer ◽  
A. M. Poznanska

In this paper we propose a new algorithm for digital terrain (DTM) model reconstruction from very high spatial resolution digital surface models (DSMs). It represents a combination of multi-directional filtering with a new metric which we call <i>normalized volume above ground</i> to create an above-ground mask containing buildings and elevated vegetation. This mask can be used to interpolate a ground-only DTM. The presented algorithm works fully automatically, requiring only the processing parameters <i>minimum height</i> and <i>maximum width</i> in metric units. Since slope and breaklines are not decisive criteria, low and smooth and even very extensive flat objects are recognized and masked. The algorithm was developed with the goal to generate the normalized DSM for automatic 3D building reconstruction and works reliably also in environments with distinct hillsides or terrace-shaped terrain where conventional methods would fail. A quantitative comparison with the ISPRS data sets <i>Potsdam</i> and <i>Vaihingen</i> show that 98-99% of all building data points are identified and can be removed, while enough ground data points (~66%) are kept to be able to reconstruct the ground surface. Additionally, we discuss the concept of <i>size dependent height thresholds</i> and present an efficient scheme for pyramidal processing of data sets reducing time complexity to linear to the number of pixels, <i>O(WH)</i>.


1997 ◽  
Vol 9 (8) ◽  
pp. 1805-1842 ◽  
Author(s):  
Marcelo Blatt ◽  
Shai Wiseman ◽  
Eytan Domany

We present a new approach to clustering, based on the physical properties of an inhomogeneous ferromagnet. No assumption is made regarding the underlying distribution of the data. We assign a Potts spin to each data point and introduce an interaction between neighboring points, whose strength is a decreasing function of the distance between the neighbors. This magnetic system exhibits three phases. At very low temperatures, it is completely ordered; all spins are aligned. At very high temperatures, the system does not exhibit any ordering, and in an intermediate regime, clusters of relatively strongly coupled spins become ordered, whereas different clusters remain uncorrelated. This intermediate phase is identified by a jump in the order parameters. The spin-spin correlation function is used to partition the spins and the corresponding data points into clusters. We demonstrate on three synthetic and three real data sets how the method works. Detailed comparison to the performance of other techniques clearly indicates the relative success of our method.


2021 ◽  
Vol 14 (6) ◽  
pp. 3530
Author(s):  
Amanda Aparecida de Paiva ◽  
Silas Constantini Burim ◽  
Paulo Augusto Ferreira Borges ◽  
Camila Souza dos Anjos

Em sua grande maioria, o georreferenciamento de imóveis rurais tem sido realizado somente com o levantamento geodésico (LG) por meio de receptores GNSS. Porém, é possível realizá-lo por meio de imagens de satélites e imagens aerotransportadas. A utilização de imagens orbitais ou aerotransportadas pode reduzir o tempo de serviço e auxiliar em limites inacessíveis e naturais. O maior problema em realizar o georreferenciamento utilizando imagens está em atender às precisões exigidas pelo Instituto Nacional de Colonização e Reforma Agrária (INCRA), em razão do imageamento ser menos preciso que o levantamento geodésico. Outra dificuldade está em identificar feições que se encontram sob matas. Entretanto, no mercado existem imagens de satélite de alta resolução espacial e também existe a possibilidade de obtenção de imagens coletadas por aeronaves remotamente pilotadas (ARP) com altíssima resolução espacial que podem atender as exigências. Deste modo este trabalho tem como objetivo avaliar as feições obtidas por três imagens, uma WorldView-3, uma PlanetScope e por uma ortofoto de ARP, sendo estas três comparadas e avaliadas a partir do LG por meio de receptores GNSS. Entre os conjuntos de dados utilizados o melhor resultado de acordo com a classificação normativa do INCRA foi a ortofoto gerada pelo levantamento aerofotogramétrico, pois atendeu à precisão para os vértices artificiais, naturais e vértices inacessíveis. No entanto, a imagem WorldView-3 apresentou o pior resultado na classificação, pois não atendeu nenhum dos tipos de vértices. Entre os três conjuntos de dados utilizados recomenda-se utilizar o levantamento aerofotogramétrico para realizar o georreferenciamento de imóveis rurais.  Evaluation of the positional accuracy of features obtained by images of orbital sensors and                   airborne for georeferencing of rural propertiesA B S T R A C TConcerning methods of positioning the georeferencing of rural properties, it stands out the topographical and geodetic surveys. However, it is possible to make through remote sensing (images of orbital sensors and airborne). The use of orbital or air-bone images can reduce service time and help in inaccessible areas, such as unreachable and natural limits. The most significant difficulty of the georeferencing using images is to meet the required accuracy by the National Institute of Colonization and Agrarian Reform (INCRA). However, there are high spatial resolution satellite images are now available. There is the possibility of getting the images collected by remotely piloted aircraft (RPA) with a very high spatial resolution that meets the requirements. This work aims to assess the features obtained by three images, a WorldView-3, a Planet Scope, and an RPA orthophoto. These three are being compared and evaluated from a geodetic survey and subsequently classified according to the cartographic precision standard of INCRA. The best dataset for the normative of INCRA was the orthophoto generated by RPA because it met the precision for artificial, natural vertices and inaccessible vertices. However, the WV-3 image had the worst result in the classification because it did not meet consistent accuracy to any of the vertices' types. Between the three data sets used, the one that best suits the specifications of georeferencing of rural properties were the images airborne.Key words: Remote Sensing, INCRA Rules, Aerophotogrammetric Survey, Cartographic Accuracy Standard.  


2019 ◽  
Vol 1 (2) ◽  
Author(s):  
Hanifa Marisa

An investigation had been done to Tetragonula (Tetragona) sp nest at Indralaya, South Sumatra to describe the Tetragonula sp nest that use streetlight pole as nest medium during April - May 2019. Purpossive sampling is used to select the target nest. Two streetlight pole found be used by Tetragonula sp as their home. The coordinate of location, heght from ground surface, diameter of streetlight pole, air temperature and humidity, and floral species around nest, were noted. Spot coordinate are S 30 14’ 19.2498’’ and E 1040 39’ 15,3288’’ ; 1,5 m above the ground surface, 12 cm diameter pole, highest air temperature was 35 o C at daylight (April and May 2019), 80 – 90 % humidity at April-May 2019; which Switenia macrophyla, Hevea brasiliensis, Zea mays, and Citrullus lanatus floral species are planted around. Air temperature in the pole is very high, around 40 0 C during daylight.


Coral Reefs ◽  
2021 ◽  
Author(s):  
E. Casoli ◽  
D. Ventura ◽  
G. Mancini ◽  
D. S. Pace ◽  
A. Belluscio ◽  
...  

AbstractCoralligenous reefs are characterized by large bathymetric and spatial distribution, as well as heterogeneity; in shallow environments, they develop mainly on vertical and sub-vertical rocky walls. Mainly diver-based techniques are carried out to gain detailed information on such habitats. Here, we propose a non-destructive and multi-purpose photo mosaicking method to study and monitor coralligenous reefs developing on vertical walls. High-pixel resolution images using three different commercial cameras were acquired on a 10 m2 reef, to compare the effectiveness of photomosaic method to the traditional photoquadrats technique in quantifying the coralligenous assemblage. Results showed very high spatial resolution and accuracy among the photomosaic acquired with different cameras and no significant differences with photoquadrats in assessing the assemblage composition. Despite the large difference in costs of each recording apparatus, little differences emerged from the assemblage characterization: through the analysis of the three photomosaics twelve taxa/morphological categories covered 97–99% of the sampled surface. Photo mosaicking represents a low-cost method that minimizes the time spent underwater by divers and capable of providing new opportunities for further studies on shallow coralligenous reefs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guillaume Lassalle ◽  
Sophie Fabre ◽  
Anthony Credoz ◽  
Rémy Hédacq ◽  
Dominique Dubucq ◽  
...  

AbstractMonitoring plant metal uptake is essential for assessing the ecological risks of contaminated sites. While traditional techniques used to achieve this are destructive, Visible Near-Infrared (VNIR) reflectance spectroscopy represents a good alternative to monitor pollution remotely. Based on previous work, this study proposes a methodology for mapping the content of several metals in leaves (Cr, Cu, Ni and Zn) under realistic field conditions and from airborne imaging. For this purpose, the reflectance of Rubus fruticosus L., a pioneer species of industrial brownfields, was linked to leaf metal contents using optimized normalized vegetation indices. High correlations were found between the vegetation indices exploiting pigment-related wavelengths and leaf metal contents (r ≤ − 0.76 for Cr, Cu and Ni, and r ≥ 0.87 for Zn). This allowed predicting the metal contents with good accuracy in the field and on the image, especially Cu and Zn (r ≥ 0.84 and RPD ≥ 2.06). The same indices were applied over the entire study site to map the metal contents at very high spatial resolution. This study demonstrates the potential of remote sensing for assessing metal uptake by plants, opening perspectives of application in risk assessment and phytoextraction monitoring in the context of trace metal pollution.


2012 ◽  
Vol 38 (2) ◽  
pp. 57-69 ◽  
Author(s):  
Abdulghani Hasan ◽  
Petter Pilesjö ◽  
Andreas Persson

Global change and GHG emission modelling are dependent on accurate wetness estimations for predictions of e.g. methane emissions. This study aims to quantify how the slope, drainage area and the TWI vary with the resolution of DEMs for a flat peatland area. Six DEMs with spatial resolutions from 0.5 to 90 m were interpolated with four different search radiuses. The relationship between accuracy of the DEM and the slope was tested. The LiDAR elevation data was divided into two data sets. The number of data points facilitated an evaluation dataset with data points not more than 10 mm away from the cell centre points in the interpolation dataset. The DEM was evaluated using a quantile-quantile test and the normalized median absolute deviation. It showed independence of the resolution when using the same search radius. The accuracy of the estimated elevation for different slopes was tested using the 0.5 meter DEM and it showed a higher deviation from evaluation data for steep areas. The slope estimations between resolutions showed differences with values that exceeded 50%. Drainage areas were tested for three resolutions, with coinciding evaluation points. The model ability to generate drainage area at each resolution was tested by pair wise comparison of three data subsets and showed differences of more than 50% in 25% of the evaluated points. The results show that consideration of DEM resolution is a necessity for the use of slope, drainage area and TWI data in large scale modelling.


2014 ◽  
Vol 21 (11) ◽  
pp. 1581-1588 ◽  
Author(s):  
Piotr Kardas ◽  
Mohammadreza Sadeghi ◽  
Fabian H. Weissbach ◽  
Tingting Chen ◽  
Lea Hedman ◽  
...  

ABSTRACTJC polyomavirus (JCPyV) can cause progressive multifocal leukoencephalopathy (PML), a debilitating, often fatal brain disease in immunocompromised patients. JCPyV-seropositive multiple sclerosis (MS) patients treated with natalizumab have a 2- to 10-fold increased risk of developing PML. Therefore, JCPyV serology has been recommended for PML risk stratification. However, different antibody tests may not be equivalent. To study intra- and interlaboratory variability, sera from 398 healthy blood donors were compared in 4 independent enzyme-linked immunoassay (ELISA) measurements generating >1,592 data points. Three data sets (Basel1, Basel2, and Basel3) used the same basic protocol but different JCPyV virus-like particle (VLP) preparations and introduced normalization to a reference serum. The data sets were also compared with an independent method using biotinylated VLPs (Helsinki1). VLP preadsorption reducing ≥35% activity was used to identify seropositive sera. The results indicated that Basel1, Basel2, Basel3, and Helsinki1 were similar regarding overall data distribution (P= 0.79) and seroprevalence (58.0, 54.5, 54.8, and 53.5%, respectively;P= 0.95). However, intra-assay intralaboratory comparison yielded 3.7% to 12% discordant results, most of which were close to the cutoff (0.080 < optical density [OD] < 0.250) according to Bland-Altman analysis. Introduction of normalization improved overall performance and reduced discordance. The interlaboratory interassay comparison between Basel3 and Helsinki1 revealed only 15 discordant results, 14 (93%) of which were close to the cutoff. Preadsorption identified specificities of 99.44% and 97.78% and sensitivities of 99.54% and 95.87% for Basel3 and Helsinki1, respectively. Thus, normalization to a preferably WHO-approved reference serum, duplicate testing, and preadsorption for samples around the cutoff may be necessary for reliable JCPyV serology and PML risk stratification.


Sign in / Sign up

Export Citation Format

Share Document