scholarly journals POLARIMETRIC SIGNATURES IDENTIFICATION FOR DIFFERENT FEATURES IN RADARSAT-2 POLSAR IMAGE: A CASE STUDY OF HALAYIB AREA, EGYPT

Author(s):  
Ayman H. Nasr ◽  
Hind Z. Abdelhamid

In fully polarized SAR (PolSAR) data the returned signal from a target contains all polarizations. More information about this target may be inferred with respect to single-polarization. Distinct polarization separates targets due to its different backscattering responses. A Radarsat-2 PolSAR image acquired on December 2013 of part of Halayib area (Egypt) was used in this study. Polarimetric signatures for various features (Wadi deposits, Tonalite, Chlorite schist, and Radar penetrated areas) were derived and identified. Their Co-polarized and Cross-polarized signatures were generated, based on the calculation of the backscattered power at various ellipticity and orientation angles. Graphical 3D-representation of these features was provided and more details of their physical information are depicted according to their different polarization bases. The results illustrate that polarimetric signatures, obtained due to factors like surface roughness, dielectric constant and feature orientation, can be an effective representation for analyzing various features. The shape of the signature is significant and can also indicate the scattering mechanisms dominating the features response.

Author(s):  
Ayman H. Nasr ◽  
Hind Z. Abdelhamid

In fully polarized SAR (PolSAR) data the returned signal from a target contains all polarizations. More information about this target may be inferred with respect to single-polarization. Distinct polarization separates targets due to its different backscattering responses. A Radarsat-2 PolSAR image acquired on December 2013 of part of Halayib area (Egypt) was used in this study. Polarimetric signatures for various features (Wadi deposits, Tonalite, Chlorite schist, and Radar penetrated areas) were derived and identified. Their Co-polarized and Cross-polarized signatures were generated, based on the calculation of the backscattered power at various ellipticity and orientation angles. Graphical 3D-representation of these features was provided and more details of their physical information are depicted according to their different polarization bases. The results illustrate that polarimetric signatures, obtained due to factors like surface roughness, dielectric constant and feature orientation, can be an effective representation for analyzing various features. The shape of the signature is significant and can also indicate the scattering mechanisms dominating the features response.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Yang-yang Li ◽  
Kai Zhao ◽  
Jian-hua Ren ◽  
Yan-ling Ding ◽  
Li-li Wu

Soil salinity is a global problem, especially in developing countries, which affects the environment and productivity of agriculture areas. Salt has a significant effect on the complex dielectric constant of wet soil. However, there is no suitable model to describe the variation in the backscattering coefficient due to changes in soil salinity content. The purpose of this paper is to use backscattering models to understand behaviors of the backscattering coefficient in saline soils based on the analysis of its dielectric constant. The effects of moisture and salinity on the dielectric constant by combined Dobson mixing model and seawater dielectric constant model are analyzed, and the backscattering coefficient is then simulated using the AIEM. Simultaneously, laboratory measurements were performed on ground samples. The frequency effect of the laboratory results was not the same as the simulated results. The frequency dependence of the ionic conductivity of an electrolyte solution is influenced by the ion’s components. Finally, the simulated backscattering coefficients measured from the dielectric constant with the AIEM were analyzed using the extracted backscattering coefficient from the RADARSAT-2 image. The results show that RADARSAT-2 is potentially able to measure soil salinity; however, the mixed pixel problem needs to be more thoroughly considered.


2004 ◽  
Vol 128 (1) ◽  
pp. 243-251 ◽  
Author(s):  
Byungwoo Lee ◽  
Kazuhiro Saitou

This paper presents a three-dimensional (3D) extension of our previous work on the synthesis of assemblies whose dimensional integrity is insensitive to the dimensional variations of individual parts. Assuming that assemblies can be built in the reverse sequence of decomposition, the method recursively decomposes a given product geometry into two subassemblies until parts become manufacturable. At each recursion, joints are assigned to the interfaces between two subassemblies to ensure the two criteria for robust dimensional integrity, in-process dimensional adjustability, and proper part constraints. Screw theory is utilized as a unified 3D representation of the two criteria. A case study on an automotive space frame is presented to demonstrate the method.


2020 ◽  
Vol 32 (7) ◽  
pp. 741-752
Author(s):  
Yongqiang Wang ◽  
Changhui Feng ◽  
Ruoyu Fei ◽  
Yu Luo

To study the ageing characteristics of epoxy resin composite insulation in dry-type transformers in high-temperature environments, glass fibre-reinforced epoxy resin samples were placed in a hot air ageing environment at 130°C for testing. Dielectric properties, partial discharge (PD), microscopic morphology, three-dimensional morphology and Fourier transform infrared spectroscopy of aged samples were periodically tested. The results show that during the ageing process, the change in the surface morphology of the sample leads to an overall upward trend in surface roughness, and the older the sample, the faster the surface roughness increases; changes in the surface morphology and three-dimensional morphology of the material constitute the basis for judging the condition of the insulating surface and the state of ageing development. Microcracks are the direct cause of debonding of glass fibres and epoxy matrix. Degradation of the sample during the ageing process generates many free radicals, which enhances the polarisation ability of the sample and increases both the dielectric constant and the dielectric loss factor. The real part of the complex dielectric constant is more sensitive to the ageing response of the sample. The older the sample, the greater the effect on the results of the dielectric spectrum test. Since the aged sample generates more hot electrons during the PD process and makes it easier to inject electrons into the material, the PD of the sample is rendered more intense by thermal ageing. There is a significant difference between the degradation mechanism of the thermal ageing and PD. The samples subjected to PD after thermal ageing produce new groups, and the degradation of the samples is more severe than that caused by thermal ageing, or PD, alone.


Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 124 ◽  
Author(s):  
Toufik Sadi ◽  
Cristina Medina-Bailon ◽  
Mihail Nedjalkov ◽  
Jaehyun Lee ◽  
Oves Badami ◽  
...  

Nanowire transistors (NWTs) are being considered as possible candidates for replacing FinFETs, especially for CMOS scaling beyond the 5-nm node, due to their better electrostatic integrity. Hence, there is an urgent need to develop reliable simulation methods to provide deeper insight into NWTs’ physics and operation, and unlock the devices’ technological potential. One simulation approach that delivers reliable mobility values at low-field near-equilibrium conditions is the combination of the quantum confinement effects with the semi-classical Boltzmann transport equation, solved within the relaxation time approximation adopting the Kubo–Greenwood (KG) formalism, as implemented in this work. We consider the most relevant scattering mechanisms governing intraband and multi-subband transitions in NWTs, including phonon, surface roughness and ionized impurity scattering, whose rates have been calculated directly from the Fermi’s Golden rule. In this paper, we couple multi-slice Poisson–Schrödinger solutions to the KG method to analyze the impact of various scattering mechanisms on the mobility of small diameter nanowire transistors. As demonstrated here, phonon and surface roughness scattering are strong mobility-limiting mechanisms in NWTs. However, scattering from ionized impurities has proved to be another important mobility-limiting mechanism, being mandatory for inclusion when simulating realistic and doped nanostructures, due to the short range Coulomb interaction with the carriers. We also illustrate the impact of the nanowire geometry, highlighting the advantage of using circular over square cross section shapes.


2020 ◽  
Vol 26 ◽  
pp. 1113-1118
Author(s):  
M.A. Manjunath ◽  
Prakash Vinod ◽  
N. Balashanmugam ◽  
M.R. Sankar

Geosciences ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 322 ◽  
Author(s):  
John B. Lindsay ◽  
Daniel R. Newman ◽  
Anthony Francioni

Surface roughness is a terrain parameter that has been widely applied to the study of geomorphological processes. One of the main challenges in studying roughness is its highly scale-dependent nature. Determining appropriate mapping scales in topographically heterogenous landscapes can be difficult. A method is presented for estimating multiscale surface roughness based on the standard deviation of surface normals. This method utilizes scale partitioning and integral image processing to isolate scales of surface complexity. The computational efficiency of the method enables high scale sampling density and identification of maximum roughness for each grid cell in a digital elevation model (DEM). The approach was applied to a 0.5 m resolution LiDAR DEM of a 210 km2 area near Brantford, Canada. The case study demonstrated substantial heterogeneity in roughness properties. At shorter scales, tillage patterns and other micro-topography associated with ground beneath forest cover dominated roughness scale signatures. Extensive agricultural land-use resulted in 35.6% of the site exhibiting maximum roughness at micro-topographic scales. At larger spatial scales, rolling morainal topography and fluvial landforms, including incised channels and meander cut banks, were associated with maximum surface roughness. This method allowed for roughness mapping at spatial scales that are locally adapted to the topographic context of each individual grid cell within a DEM. Furthermore, the analysis revealed significant differences in roughness characteristics among soil texture categories, demonstrating the practical utility of locally adaptive, scale-optimized roughness.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1343 ◽  
Author(s):  
Tudor Deaconescu ◽  
Andrea Deaconescu

Lapping is a finishing process where loose abrasive grains contained in a slurry are pressed against a workpiece to reduce its surface roughness. To perform a lapping operation, the user needs to set the values of the respective lapping conditions (e.g., pressure, depth of cut, the rotational speed of the pressing lap plate, and alike) based on some material properties of the workpiece, abrasive grains, and slurry, as well as on the desired surface roughness. Therefore, a mathematical model is needed that establishes the relationships among the abovementioned parameters. The mathematical model can be used to develop a lapping operation optimization system, as well. To this date, such a model and system are not available mainly because the relationships among lapping conditions, material properties of abrasive grains and slurry, and surface roughness are difficult to establish. This study solves this problem. It presents a mathematical model establishing the required relationships. It also presents a system developed based on the mathematical model. In addition, the efficacy of the system is also shown using a case study. This study thus helps systematize lapping operations in regard to real-world applications.


Sign in / Sign up

Export Citation Format

Share Document