scholarly journals Analysis of the Dielectric Constant of Saline-Alkali Soils and the Effect on Radar Backscattering Coefficient: A Case Study of Soda Alkaline Saline Soils in Western Jilin Province Using RADARSAT-2 Data

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Yang-yang Li ◽  
Kai Zhao ◽  
Jian-hua Ren ◽  
Yan-ling Ding ◽  
Li-li Wu

Soil salinity is a global problem, especially in developing countries, which affects the environment and productivity of agriculture areas. Salt has a significant effect on the complex dielectric constant of wet soil. However, there is no suitable model to describe the variation in the backscattering coefficient due to changes in soil salinity content. The purpose of this paper is to use backscattering models to understand behaviors of the backscattering coefficient in saline soils based on the analysis of its dielectric constant. The effects of moisture and salinity on the dielectric constant by combined Dobson mixing model and seawater dielectric constant model are analyzed, and the backscattering coefficient is then simulated using the AIEM. Simultaneously, laboratory measurements were performed on ground samples. The frequency effect of the laboratory results was not the same as the simulated results. The frequency dependence of the ionic conductivity of an electrolyte solution is influenced by the ion’s components. Finally, the simulated backscattering coefficients measured from the dielectric constant with the AIEM were analyzed using the extracted backscattering coefficient from the RADARSAT-2 image. The results show that RADARSAT-2 is potentially able to measure soil salinity; however, the mixed pixel problem needs to be more thoroughly considered.

2022 ◽  
Vol 10 (1) ◽  
pp. 150
Author(s):  
Rafael Jiménez-Mejía ◽  
Ricardo I. Medina-Estrada ◽  
Santos Carballar-Hernández ◽  
Ma. del Carmen Orozco-Mosqueda ◽  
Gustavo Santoyo ◽  
...  

Plants and their microbiomes, including plant growth-promoting bacteria (PGPB), can work as a team to reduce the adverse effects of different types of stress, including drought, heat, cold, and heavy metals stresses, as well as salinity in soils. These abiotic stresses are reviewed here, with an emphasis on salinity and its negative consequences on crops, due to their wide presence in cultivable soils around the world. Likewise, the factors that stimulate the salinity of soils and their impact on microbial diversity and plant physiology were also analyzed. In addition, the saline soils that exist in Mexico were analyzed as a case study. We also made some proposals for a more extensive use of bacterial bioinoculants in agriculture, particularly in developing countries. Finally, PGPB are highly relevant and extremely helpful in counteracting the toxic effects of soil salinity and improving crop growth and production; therefore, their use should be intensively promoted.


1997 ◽  
Vol 503 ◽  
Author(s):  
B. K. Diefenderfer ◽  
I. L. Al-Qadi ◽  
J. J. Yoho ◽  
S. M. Riad ◽  
A. Loulizi

ABSTRACTPortland cement concrete (PCC) structures deteriorate with age and need to be maintained or replaced. Early detection of deterioration in PCC (e.g., alkali-silica reaction, freeze/thaw damage, or chloride presence) can lead to significant reductions in maintenance costs. However, it is often too late to perform low-cost preventative maintenance by the time deterioration becomes evident. By developing techniques that would enable civil engineers to evaluate PCC structures and detect deterioration at early stages (without causing further damage), optimization of life-cycle costs of the constructed facility and minimization of disturbance to the facility users can be achieved.Nondestructive evaluation (NDE) methods are potentially one of the most useful techniques ever developed for assessing constructed facilities. They are noninvasive and can be performed rapidly. Portland cement concrete can be nondestructively evaluated by electrically characterizing its complex dielectric constant. The real part of the dielectric constant depicts the velocity of electromagnetic waves in PCC. The imaginary part, termed the “loss factor,” describes the conductivity of PCC and the attenuation of electromagnetic waves.Dielectric properties of PCC have been investigated in a laboratory setting using a parallel plate capacitor operating in the frequency range of 0.1 to 40.1MIHz. This capacitor set-up consists of two horizontal-parallel plates with an adjustable separation for insertion of a dielectric specimen (PCC). While useful in research, this approach is not practical for field implementation. A new capacitor probe has been developed which consists of two plates, located within the same horizontal plane, for placement upon the specimen to be tested. Preliminary results show that this technique is feasible and results are promising; further testing and evaluation is currently underway.


1957 ◽  
Vol 35 (9) ◽  
pp. 995-1003 ◽  
Author(s):  
A. G. Mungall ◽  
John Hart

The measurement of the complex dielectric constant of lossy liquids in the millimeter and centimeter wave region by a free-space technique is described. The method involves the measurement of absorption per wavelength and of reflectance at normal incidence. Families of curves are given for the relations between these two quantities and the real and imaginary parts of the complex dielectric constant. Results for ethyl and methyl alcohol at 9 and 13 mm. wavelength are compared with those obtained by waveguide techniques.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1316
Author(s):  
Shujahadeen B. Aziz ◽  
Muaffaq M. Nofal ◽  
Hewa O. Ghareeb ◽  
Elham M. A. Dannoun ◽  
Sarkawt A. Hussen ◽  
...  

The influence of dispersing Al-metal complex on the optical properties of PVA was investigated using UV–visible spectroscopy. Polymer composite films with various Al3+-complex amounts in the PVA matrix were arranged by solution casting technique by means of distilled water as a widespread solvent. The formation of Al3+-metal complex was verified through Ultraviolet–visible (UV-Vis) and Fourier-transform infrared spectroscopy (FTIR) examinations. The addition of Al-complex into the polymer matrix led to the recovery of the optical parameters such as dielectric constant (εr and εi) and refractive index (n). The variations of real and imaginary parts of complex dielectric constant as a function of photon wavelength were studied to calculate localized charge density values (N/m*), high-frequency dielectric constant, relaxation time, optical mobility, optical resistivity, and plasma angular frequency (ωp) of electrons. In proportion with Al3+-complex content, the N/m* values were amplified from 3.68 × 1055 kg−1 m−3 to 109 × 1055 kg−1 m−3. The study of optical parameters may find applications within optical instrument manufacturing. The optical band gap was determined from Tauc’s equation, and the type of electronic transition was specified. A remarkable drop in the optical band gap was observed. The dispersion of static refractive index (no) of the prepared composites was analyzed using the theoretical Wemple–DiDomenico single oscillator model. The average oscillator energy (Eo) and oscillator dispersion energy (Ed) parameters were estimated.


2021 ◽  
Vol 900 ◽  
pp. 16-25
Author(s):  
Tabarak Mohammed Awad ◽  
May A.S. Mohammed

In this study, some optical properties were studied of the pure vinyl polyvinyl alcohol (PVA) nanopolymer (German origin). Under the influence of different temperatures and pressures of PVA. Where 25 samples were prepared for the purpose of conducting the research. Which studied the study of these samples was done by recording the absorbance and transmittance spectra of the wavelengths (200-900) nm. From them, absorbance, transmittance, reflectivity, absorption coefficient, refractive index, extinction coefficient, complex dielectric constant were calculated. At different temperatures (25,40, 80, 120, 160)°C. And with different pressures within the range (7.5,8,8.5,9,9.5) MPa. The results are that the permeability of the polymer (PVA) at different temperatures for each pressure decreases with increasing temperature, and that all other calculated optical properties increase with increasing temperature.


Sign in / Sign up

Export Citation Format

Share Document