scholarly journals Implementation and validation of a coastal forecasting system for wind waves in the Mediterranean Sea

2012 ◽  
Vol 12 (2) ◽  
pp. 485-494 ◽  
Author(s):  
R. Inghilesi ◽  
F. Catini ◽  
G. Bellotti ◽  
L. Franco ◽  
A. Orasi ◽  
...  

Abstract. A coastal forecasting system was implemented to provide wind wave forecasts over the whole Mediterranean Sea area, and with the added capability to focus on selected coastal areas. The goal of the system was to achieve a representation of the small-scale coastal processes influencing the propagation of waves towards the coasts. The system was based on a chain of nested wave models and adopted the WAve Model (WAM) to analyse the large-scale, deep-sea propagation of waves; and the Simulating WAves Nearshore (SWAN) to simulate waves in key coastal areas. Regional intermediate-scale WAM grids were introduced to bridge the gap between the large-scale and each coastal area. Even applying two consecutive nestings (Mediterranean grid → regional grid → coastal grid), a very high resolution was still required for the large scale WAM implementation in order to get a final resolution of about 400 m on the shores. In this study three regional areas in the Tyrrhenian Sea were selected, with a single coastal area embedded in each of them. The number of regional and coastal grids in the system could easily be modified without significantly affecting the efficiency of the system. The coastal system was tested in three Italian coastal regions in order to optimize the numerical parameters and to check the results in orographically complex zones for which wave records were available. Fifteen storm events in the period 2004–2009 were considered.

2015 ◽  
Vol 19 (8) ◽  
pp. 3365-3385 ◽  
Author(s):  
V. Thiemig ◽  
B. Bisselink ◽  
F. Pappenberger ◽  
J. Thielen

Abstract. The African Flood Forecasting System (AFFS) is a probabilistic flood forecast system for medium- to large-scale African river basins, with lead times of up to 15 days. The key components are the hydrological model LISFLOOD, the African GIS database, the meteorological ensemble predictions by the ECMWF (European Centre for Medium-Ranged Weather Forecasts) and critical hydrological thresholds. In this paper, the predictive capability is investigated in a hindcast mode, by reproducing hydrological predictions for the year 2003 when important floods were observed. Results were verified by ground measurements of 36 sub-catchments as well as by reports of various flood archives. Results showed that AFFS detected around 70 % of the reported flood events correctly. In particular, the system showed good performance in predicting riverine flood events of long duration (> 1 week) and large affected areas (> 10 000 km2) well in advance, whereas AFFS showed limitations for small-scale and short duration flood events. The case study for the flood event in March 2003 in the Sabi Basin (Zimbabwe) illustrated the good performance of AFFS in forecasting timing and severity of the floods, gave an example of the clear and concise output products, and showed that the system is capable of producing flood warnings even in ungauged river basins. Hence, from a technical perspective, AFFS shows a large potential as an operational pan-African flood forecasting system, although issues related to the practical implication will still need to be investigated.


2011 ◽  
Vol 139 (2) ◽  
pp. 353-366 ◽  
Author(s):  
Igor Petenko ◽  
Giangiuseppe Mastrantonio ◽  
Angelo Viola ◽  
Stefania Argentini ◽  
Lucia Coniglio ◽  
...  

Ocean Science ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. 431-453
Author(s):  
Rebeca de la Fuente ◽  
Gábor Drótos ◽  
Emilio Hernández-García ◽  
Cristóbal López ◽  
Erik van Sebille

Abstract. We study the vertical dispersion and distribution of negatively buoyant rigid microplastics within a realistic circulation model of the Mediterranean sea. We first propose an equation describing their idealized dynamics. In that framework, we evaluate the importance of some relevant physical effects (inertia, Coriolis force, small-scale turbulence and variable seawater density), and we bound the relative error of simplifying the dynamics to a constant sinking velocity added to a large-scale velocity field. We then calculate the amount and vertical distribution of microplastic particles on the water column of the open ocean if their release from the sea surface is continuous at rates compatible with observations in the Mediterranean. The vertical distribution is found to be almost uniform with depth for the majority of our parameter range. Transient distributions from flash releases reveal a non-Gaussian character of the dispersion and various diffusion laws, both normal and anomalous. The origin of these behaviors is explored in terms of horizontal and vertical flow organization.


2018 ◽  
Vol 73 ◽  
pp. 10026
Author(s):  
Triyanti Riesti ◽  
Susilowati Indah

The Coastal Area of Gunungkidul Regency has beautiful beaches supported by small scale fisheries activities that can attract tourists to visit. The problem of coastal management are waste overload and sectoral ego. The aims of this study are to identify socio-economics characteristics of tourists, the factors of push-pull tourists to visit, and estimate the economic value of coastal areas. Criteria of push factors tourist based on self motivation, while the pull factors based on the perception of tourists. Estimation of economic value using travel cost method. The research was conducted by survey technique. The main tourist destinations to go are to enjoy the beauty of the beach (81%), observation of natural resources (11%), and school assignment (8%), with self motivation are potential of natural resources (62%), closed distance from home (24) %), and low cost (14%). The perception of the tourists associated with the beach is quite beautiful (77%) with clean and well maintained condition (72%), but needs public facilities (38%). Estimated economic value of coastal tourism is IDR 3.1 billion per year showed that coastal areas need to be maintained for future generations. Collaborative and transparent management of coastal resources between community and government is essential to maintain coastal tourism sustainability.


2017 ◽  
Vol 17 (1) ◽  
pp. 45-59 ◽  
Author(s):  
Ivan Federico ◽  
Nadia Pinardi ◽  
Giovanni Coppini ◽  
Paolo Oddo ◽  
Rita Lecci ◽  
...  

Abstract. SANIFS (Southern Adriatic Northern Ionian coastal Forecasting System) is a coastal-ocean operational system based on the unstructured grid finite-element three-dimensional hydrodynamic SHYFEM model, providing short-term forecasts. The operational chain is based on a downscaling approach starting from the large-scale system for the entire Mediterranean Basin (MFS, Mediterranean Forecasting System), which provides initial and boundary condition fields to the nested system. The model is configured to provide hydrodynamics and active tracer forecasts both in open ocean and coastal waters of southeastern Italy using a variable horizontal resolution from the open sea (3–4 km) to coastal areas (50–500 m). Given that the coastal fields are driven by a combination of both local (also known as coastal) and deep-ocean forcings propagating along the shelf, the performance of SANIFS was verified both in forecast and simulation mode, first (i) on the large and shelf-coastal scales by comparing with a large-scale survey CTD (conductivity–temperature–depth) in the Gulf of Taranto and then (ii) on the coastal-harbour scale (Mar Grande of Taranto) by comparison with CTD, ADCP (acoustic doppler current profiler) and tide gauge data. Sensitivity tests were performed on initialization conditions (mainly focused on spin-up procedures) and on surface boundary conditions by assessing the reliability of two alternative datasets at different horizontal resolution (12.5 and 6.5 km). The SANIFS forecasts at a lead time of 1 day were compared with the MFS forecasts, highlighting that SANIFS is able to retain the large-scale dynamics of MFS. The large-scale dynamics of MFS are correctly propagated to the shelf-coastal scale, improving the forecast accuracy (+17 % for temperature and +6 % for salinity compared to MFS). Moreover, the added value of SANIFS was assessed on the coastal-harbour scale, which is not covered by the coarse resolution of MFS, where the fields forecasted by SANIFS reproduced the observations well (temperature RMSE equal to 0.11 °C). Furthermore, SANIFS simulations were compared with hourly time series of temperature, sea level and velocity measured on the coastal-harbour scale, showing a good agreement. Simulations in the Gulf of Taranto described a circulation mainly characterized by an anticyclonic gyre with the presence of cyclonic vortexes in shelf-coastal areas. A surface water inflow from the open sea to Mar Grande characterizes the coastal-harbour scale.


2014 ◽  
Vol 11 (1) ◽  
pp. 11-23 ◽  
Author(s):  
M. Casaioli ◽  
F. Catini ◽  
R. Inghilesi ◽  
P. Lanucara ◽  
P. Malguzzi ◽  
...  

Abstract. The coupling of a suite of meteorological limited area models with a wave prediction system based on the nesting of different wave models provides for medium-range sea state forecasts at the Mediterranean, regional and coastal scale. The new system has been operational at ISPRA since September 2012, after the upgrade of both the meteorological BOLAM model and large-scale marine components of the original SIMM forecasting system and the implementation of the new regional and coastal (WAM-SWAN coupling) chain of models. The coastal system is composed of nine regional-scale high-resolution grids, covering all Italian seas and six coastal grids at very high resolution, capable of accounting for the effects of the interaction between the incoming waves and the bathymetry. A preliminary analysis of the performance of the system is discussed here focusing on the ability of the system to simulate the mean features of the wave climate at the regional and sub-regional scale. The results refer to two different verification studies. The first is the comparison of the directional distribution of almost one year of wave forecasts against the known wave climate in northwestern Sardinia and central Adriatic Sea. The second is a sensitivity test on the effect on wave forecasts of the spatial resolution of the wind forcing, being the comparison between wave forecast and buoy data at two locations in the northern Adriatic and Ligurian Sea during several storm episodes in the period autumn 2012–winter 2013.


2020 ◽  
Vol 17 (13) ◽  
pp. 3343-3366
Author(s):  
Vincent Taillandier ◽  
Louis Prieur ◽  
Fabrizio D'Ortenzio ◽  
Maurizio Ribera d'Alcalà ◽  
Elvira Pulido-Villena

Abstract. In the western Mediterranean Sea, Levantine intermediate waters (LIW), which circulate below the surface productive zone, progressively accumulate nutrients along their pathway from the Tyrrhenian Sea to the Algerian Basin. This study addresses the role played by diffusion in the nutrient enrichment of the LIW, a process particularly relevant inside step-layer structures extending down to deep waters – structures known as thermohaline staircases. Profiling float observations confirmed that staircases develop over epicentral regions confined in large-scale circulation features and maintained by saltier LIW inflows on the periphery. Thanks to a high profiling frequency over the 4-year period 2013–2017, float observations reveal the temporal continuity of the layering patterns encountered during the cruise PEACETIME and document the evolution of layer properties by about +0.06 ∘C in temperature and +0.02 in salinity. In the Algerian Basin, the analysis of in situ lateral density ratios untangled double-diffusive convection as a driver of thermohaline changes inside epicentral regions and isopycnal diffusion as a driver of heat and salt exchanges with the surrounding sources. In the Tyrrhenian Sea, the nitrate flux across thermohaline staircases, as opposed to the downward salt flux, contributes up to 25 % of the total nitrate pool supplied to the LIW by vertical transfer. Overall, however, the nutrient enrichment of the LIW is driven mostly by other sources, coastal or atmospheric, as well as by inputs advected from the Algerian Basin.


2019 ◽  
Vol 12 (12) ◽  
pp. 6683-6693
Author(s):  
Enzo Papandrea ◽  
Stefano Casadio ◽  
Elisa Castelli ◽  
Bianca Maria Dinelli ◽  
Mario Marcello Miglietta

Abstract. Atmospheric gravity waves generated downstream by orography in a stratified airflow are known as lee waves. In the present study, such mesoscale patterns have been detected, over water and in clear-sky conditions, using the Advanced Infra-Red WAter Vapour Estimator (AIRWAVE) total column water vapour (TCWV) dataset, which contains about 20 years of day and night products, obtained from the thermal infrared measurements of the Along Track Scanning Radiometer (ATSR) instrument series. The high accuracy of such data, along with the native 1 km×1 km spatial resolution, allows the investigation of small-scale features such as lee waves. In this work, we focused on the Mediterranean Sea, the largest semi-enclosed basin on the Earth. The peculiarities of this area, which is characterised by complex orography and rough coastlines, lead to the development of these structures over both land and sea. We developed an automatic tool for the rapid detection of areas with high probability of lee wave occurrence, exploiting the TCWV variability in spatial regions with a 0.15∘×0.15∘ area. Through this analysis, several occurrences of structures connected with lee waves have been observed. The waves are detected in spring, autumn and summer seasons, with TCWV values usually falling in the range of 15 to 35 kg m−2. In this article, we describe some cases over the central (Italy) and the Eastern Mediterranean Basin (Greece, Turkey and Cyprus). We compared a case of perturbed AIRWAVE TCWV fields due to lee waves occurring over the Tyrrhenian Sea on 18 July 1997 with the sea surface winds from the synthetic aperture radar (SAR), which sounded the same geographical area, finding a good agreement. Another case has been investigated in detail: on 2 August 2002 the Aegean Sea region was almost simultaneously sounded by both the second sensor of the ATSR series (ATSR-2) and the Advanced ATSR (AATSR) instruments. The AIRWAVE TCWV fields derived from the two sensors were successfully compared with the vertically integrated water vapour content simulated with the Weather Research and Forecasting (WRF) numerical model for the same time period, confirming our findings. Wave parameters such as amplitude, wavelength and phase are described through the use of the Morlet continuous wavelet transformation (CWT). The performed analysis derived typical wavelengths from 6 to 8 km and amplitudes of up to 20 kg m−2.


2020 ◽  
Author(s):  
Rebeca de la Fuente ◽  
Gábor Drótos ◽  
Emilio Hernández García ◽  
Cristóbal López ◽  
Erik van Sebille

Abstract. We study the vertical dispersion and distribution of negatively buoyant rigid microplastics within a realistic circulation model of the Mediterranean sea. We first propose an equation describing their idealized dynamics. In that framework, we evaluate the importance of some relevant physical effects: inertia, Coriolis force, small-scale turbulence and variable seawater density, and bound the relative error of simplifying the dynamics to a constant sinking velocity added to a large-scale velocity field. We then calculate the amount and vertical distribution of microplastic particles on the water column of the open ocean if their release from the sea surface is continuous at rates compatible with observations in the Mediterranean. The vertical distribution is found to be almost uniform with depth for the majority of our parameter range. Transient distributions from flash releases reveal a non-Gaussian character of the dispersion and various diffusion laws, both normal and anomalous. The origin of these behaviors is explored in terms of horizontal and vertical flow organization.


2021 ◽  
Author(s):  
Rebeca de la Fuente ◽  
Gábor Drótos ◽  
Emilio Hernández ◽  
Cristóbal López ◽  
Erik van Sebille

<p>We study the vertical dispersion and distribution of negatively buoyant rigid microplastics within a realistic circulation model of the Mediterranean sea. We first propose an equation describing their idealized dynamics. In that framework, we evaluate the importance of some relevant physical effects: inertia, Coriolis force, small-scale turbulence and variable seawater density, and bound the relative error of simplifying the dynamics to a constant sinking velocity added to a large-scale velocity field. We then calculate the amount and vertical distribution of microplastic particles on the water column of the open ocean if their release from the sea surface is continuous at rates compatible with observations in the Mediterranean. The vertical distribution is found to be almost uniform with depth for the majority of our parameter range. Transient distributions from flash releases reveal a non-Gaussian character of the dispersion and various diffusion laws, both normal and anomalous. The origin of these behaviors is explored in terms of horizontal and vertical flow organization.</p>


Sign in / Sign up

Export Citation Format

Share Document