scholarly journals Assessing internal changes in the future structure of dry–hot compound events: the case of the Pyrenees

2021 ◽  
Vol 21 (6) ◽  
pp. 1721-1738
Author(s):  
Marc Lemus-Canovas ◽  
Joan Albert Lopez-Bustins

Abstract. Impacts upon vulnerable areas such as mountain ranges may become greater under a future scenario of adverse climatic conditions. In this sense, the concurrence of long dry spells and extremely hot temperatures can induce environmental risks such as wildfires, crop yield losses or other problems, the consequences of which could be much more serious than if these events were to occur separately in time (e.g. only long dry spells). The present study attempts to address recent and future changes in the following dimensions: duration (D), magnitude (M) and extreme magnitude (EM) of compound dry–hot events in the Pyrenees. The analysis focuses upon changes in the extremely long dry spells and extremely high temperatures that occur within these dry periods in order to estimate whether the internal structure of the compound event underwent a change in the observed period (1981–2015) and whether it will change in the future (2006–2100) under intermediate (RCP4.5, where RCP is representative concentration pathway) and high (RCP8.5) emission scenarios. To this end, we quantified the changes in the temporal trends of such events, as well as changes in the bivariate probability density functions for the main Pyrenean regions. The results showed that to date the risk of the compound event has increased by only one dimension – magnitude (including extreme magnitude) – during the last few decades. In relation to the future, increase in risk was found to be associated with an increase in both the magnitude and the duration (extremely long dry spells) of the compound event throughout the Pyrenees during the spring under RCP8.5 and in the northernmost part of this mountain range during summer under this same scenario.

2021 ◽  
Author(s):  
Marc Lemus-Canovas ◽  
Joan Albert Lopez-Bustins

Abstract. Impacts upon vulnerable areas such as mountain ranges may become greater under a future scenario of adverse climatic conditions. In this sense, the concurrence of long dry spells and extremely hot temperatures can induce environmental risks such as wildfires, crop yield losses or other problems, the consequences of which could be much more serious than if these events were to occur separately in time (e.g. only long dry spells). The present study attempts to address recent and future changes in the following dimensions: duration (D), magnitude (M) and extreme magnitude (EM) of compound Dry-Hot events in the Pyrenees. The analysis focuses upon changes in the extremely long dry spells and extremely high temperatures that occur within these dry periods, in order to estimate whether the internal structure of the compound event underwent a change in the observed period (1981–2015) and whether it will change in the future (2011–2100) under intermediate (RCP4.5) and high (RCP8.5) emission scenarios. To this end, we quantified the changes in the temporal trends of such events, as well as changes in the bivariate probability density functions for the main Pyrenean regions. The results showed that to date the risk of the compound event has increased by only one dimension –magnitude (including extreme magnitude) – during the last few decades. In relation to the future, increased in risk was found to be associated with an increase both in the magnitude and the duration (extremely long dry spells) of the compound event, mainly in the eastern and southern regions of the Pyrenees.


2013 ◽  
Vol 35 (4) ◽  
pp. 409 ◽  
Author(s):  
Huilong Lin ◽  
Xuelu Wang ◽  
Yingjun Zhang ◽  
Tiangang Liang ◽  
Qisheng Feng ◽  
...  

Net primary productivity (NPP) of grassland is one of the key components in measuring the carrying capacity of livestock. Not only are grassland researchers concerned with the performance of NPP simulation models under current climate conditions, they also need to understand the behaviour of NPP–climate models under projected climatic changes. One of the goals of this study was to evaluate the three NPP–climate models: the Miami Model, the Schuur Model, and the Classification Indices-based Model. Results indicated that the Classification Indices-based Model was the most effective model at estimating large-scale grassland NPP. Both the Integrated Orderly Classification System of Grassland and the Classification Indices-based Model were then applied to analyse the succession of grassland biomes and to measure the change in total NPP (TNPP) of grassland biomes from the recent past (1950–2000) to a future scenario (2001–2050) in a geographic information system environment. Results of the simulations indicate that, under recent-past climatic conditions, the major biomes of China’s grassland are the tundra and alpine steppe, and steppe, and these would be converted into steppe and semi-desert grassland in the future scenario; the potential grassland TNPP in China was projected to be 0.72 PgC under recent-past climatic conditions, and would be 0.83 Pg C under the future climatic scenario. The ‘safe’ carrying capacity of livestock that best integrates a wide range of factors, such as grassland classes, climatic variability, and animal nutrition, is discussed as unresolved. Further research and development is needed to identify the regional trends for the ‘safe’ carrying capacity of livestock to maintain sustainable resource condition and reduce the risk of resource degradation. This important task remains a challenge for all grassland scientists and practitioners.


2007 ◽  
Vol 18 (2) ◽  
Author(s):  
Andrés Baselga ◽  
Francisco Novoa

Chrysomelidae from the Sierra de Queixa mountains (Galicia, northwest Spain) were sampled, reporting 93 species. The estimated local species richness using several non-parametric estimators and accumulation models varies between 104 and 142 species. To compare the Chrysomelidae fauna from Sierra de Queixa with other Galician assemblages we have assessed beta diversity among inventories and we have tested the differences on the zoogeographic compositions among areas. Sierra de Queixa is grouped with other Galician mountain ranges located in the transition zone between Eurosiberian and Mediterranean regions, and it is characterised by a high proportion of Iberian endemic species, significantly higher than expected. Therefore, Chrysomelidae fauna from Sierra de Queixa represents a unique assemblage of Eurosiberian elements that reached the area due to the climatic conditions and Iberian endemic species that are present in the Iberian mountains due to its historic role as southern refugia during glaciations.


MedienJournal ◽  
2017 ◽  
Vol 36 (4) ◽  
pp. 51
Author(s):  
Renira Rampazzo Gambarato ◽  
Geane Carvalho Alzamora

This paper is presented in order to understand the evolution of media dynamics in Brazil and investigate its perspectives for the future. Brazil, among the BRICS states (Brazil, Russia, India, China and South Africa), will be our focus. From a mono-mediatic paradigm to a convergent one, Brazil is developing new practices in fictional and non-fictional media. Our hypothesis is that the transmedia storytelling strategy is both the reality – although still timid – and the most probable future scenario for media development in Brazil. We can assert that transmedia storytelling is a tendency. Therefore, we will explore examples of transmedia storytelling initiatives in Brazilian media mainly related to journalism, entertainment, branding and advertisement.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hendri Irwandi ◽  
Mohammad Syamsu Rosid ◽  
Terry Mart

AbstractThis research quantitatively and qualitatively analyzes the factors responsible for the water level variations in Lake Toba, North Sumatra Province, Indonesia. According to several studies carried out from 1993 to 2020, changes in the water level were associated with climate variability, climate change, and human activities. Furthermore, these studies stated that reduced rainfall during the rainy season due to the El Niño Southern Oscillation (ENSO) and the continuous increase in the maximum and average temperatures were some of the effects of climate change in the Lake Toba catchment area. Additionally, human interventions such as industrial activities, population growth, and damage to the surrounding environment of the Lake Toba watershed had significant impacts in terms of decreasing the water level. However, these studies were unable to determine the factor that had the most significant effect, although studies on other lakes worldwide have shown these factors are the main causes of fluctuations or decreases in water levels. A simulation study of Lake Toba's water balance showed the possibility of having a water surplus until the mid-twenty-first century. The input discharge was predicted to be greater than the output; therefore, Lake Toba could be optimized without affecting the future water level. However, the climate projections depicted a different situation, with scenarios predicting the possibility of extreme climate anomalies, demonstrating drier climatic conditions in the future. This review concludes that it is necessary to conduct an in-depth, comprehensive, and systematic study to identify the most dominant factor among the three that is causing the decrease in the Lake Toba water level and to describe the future projected water level.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 924
Author(s):  
Astrid Stobbe ◽  
Maren Gumnior

In the Central German Uplands, Fagus sylvatica and Picea abies have been particularly affected by climate change. With the establishment of beech forests about 3000 years ago and pure spruce stands 500 years ago, they might be regarded as ‘neophytes’ in the Hessian forests. Palaeoecological investigations at wetland sites in the low mountain ranges and intramontane basins point to an asynchronous vegetation evolution in a comparatively small but heterogenous region. On the other hand, palynological data prove that sustainably managed woodlands with high proportions of Tilia have been persisting for several millennia, before the spread of beech took place as a result of a cooler and wetter climate and changes in land management. In view of increasingly warmer and drier conditions, Tilia cordata appears especially qualified to be an important silvicultural constituent of the future, not only due to its tolerance towards drought, but also its resistance to browsing, and the ability to reproduce vegetatively. Forest managers should be encouraged to actively promote the return to more stress-tolerant lime-dominated woodlands, similar to those that existed in the Subboreal chronozone.


2018 ◽  
Author(s):  
Junxi Zhang ◽  
Yang Gao ◽  
Kun Luo ◽  
L. Ruby Leung ◽  
Yang Zhang ◽  
...  

Abstract. The Weather Research and Forecasting model with Chemistry (WRF/Chem) was used to study the effect of extreme weather events on ozone in US for historical (2001–2010) and future (2046–2055) periods under RCP8.5 scenario. During extreme weather events, including heat waves, atmospheric stagnation, and their compound events, ozone concentration is much higher compared to non-extreme events period. A striking enhancement of effect during compound events is revealed when heat wave and stagnation occur simultaneously and both high temperature and low wind speed promote the production of high ozone concentrations. In regions with high emissions, compound extreme events can shift the high-end tails of the probability density functions (PDFs) of ozone to even higher values to generate extreme ozone episodes. In regions with low emissions, extreme events can still increase high ozone frequency but the high-end tails of the PDFs are constrained by the low emissions. Despite large anthropogenic emission reduction projected for the future, compound events increase ozone more than the single events by 10 % to 13 %, comparable to the present, and high ozone episodes are not eliminated. Using the CMIP5 multi-model ensemble, the frequency of compound events is found to increase more dominantly compared to the increased frequency of single events in the future over the US, Europe, and China. High ozone episodes will likely continue in the future due to increases in both frequency and intensity of extreme events, despite reductions in anthropogenic emissions of its precursors. However, the latter could reduce or eliminate extreme ozone episodes, so improving projections of compound events and their impacts on extreme ozone may better constrain future projections of extreme ozone episodes that have detrimental effects on human health.


2011 ◽  
Vol 11 (9) ◽  
pp. 2463-2468 ◽  
Author(s):  
Y. Tramblay ◽  
L. Neppel ◽  
J. Carreau

Abstract. In Mediterranean regions, climate studies indicate for the future a possible increase in the extreme rainfall events occurrence and intensity. To evaluate the future changes in the extreme event distribution, there is a need to provide non-stationary models taking into account the non-stationarity of climate. In this study, several climatic covariates are tested in a non-stationary peaks-over-threshold modeling approach for heavy rainfall events in Southern France. Results indicate that the introduction of climatic covariates could improve the statistical modeling of extreme events. In the case study, the frequency of southern synoptic circulation patterns is found to improve the occurrence process of extreme events modeled via a Poisson distribution, whereas for the magnitude of the events, the air temperature and sea level pressure appear as valid covariates for the Generalized Pareto distribution scale parameter. Covariates describing the humidity fluxes at monthly and seasonal time scales also provide significant model improvements for the occurrence and the magnitude of heavy rainfall events. With such models including climatic covariates, it becomes possible to asses the risk of extreme events given certain climatic conditions at monthly or seasonal timescales. The future changes in the heavy rainfall distribution can also be evaluated using covariates computed by climate models.


2021 ◽  
Author(s):  
Tim van der Schriek ◽  
Konstantinos V. Varotsos ◽  
Dimitra Founda ◽  
Christos Giannakopoulos

<p>Historical changes, spanning 1971–2016, in the Athens Urban Heat Island (UHI) over summer were assessed by contrasting two air temperature records from established meteorological stations in urban and rural settings. When contrasting two 20-year historical periods (1976–1995 and 1996–2015), there is a significant difference in summer UHI regimes. The stronger UHI-intensity of the second period (1996–2015) is likely linked to increased pollution and heat input. Observations suggest that the Athens summer UHI characteristics even fluctuate on multi-annual basis. Specifically, the reduction in air pollution during the Greek Economic Recession (2008-2016) probable subtly changed the UHI regime, through lowering the frequencies of extremely hot days (T<sub>max</sub> > 37 °C) and nights (T<sub>min</sub> > 26 °C).</p><p>Subsequently, we examined the future temporal trends of two different UHIs in Athens (Greece) under three climate change scenarios. A five-member regional climate model (RCM) sub-ensemble from EURO-CORDEX with a horizontal resolution of 0.11° (~12 × 12 km) simulated air temperature data, spanning the period 1976–2100, for the two station sites. Three future emissions scenarios (RCP2.6, RCP4.5 and RCP8.5) were implanted in the simulations after 2005. The observed daily maximum and minimum air temperature data (T<sub>max</sub> and T<sub>min</sub>) from two historical UHI regimes (1976–1995 and 1996–2015, respectively) were used, separately, to bias-adjust the model simulations thus creating two sets of results.</p><p>This novel approach allowed us to assess future temperature developments in Athens under two different UHI intensity regimes. We found that the future frequency of days with T<sub>max</sub> > 37 °C in Athens was only different from rural background values under the intense UHI regime. There is a large increase in the future frequency of nights with T<sub>min</sub> > 26 °C in Athens under all UHI regimes and climate scenarios; these events remain comparatively rare at the rural site.</p><p>This study shows a large urban amplification of the frequency of extremely hot days and nights which is likely forced by increasing air pollution and heat input. Consequently, local mitigation policies aimed at decreasing urban atmospheric pollution are expected to be also effective in reducing urban temperatures during extreme heat events in Athens under all future climate change scenarios. Such policies therefore have multiple benefits, including: reducing electricity (energy) needs, improving living quality and decreasing heat- and pollution related illnesses/deaths.</p><p> </p>


2018 ◽  
Vol 11 (4) ◽  
pp. 228
Author(s):  
Hanaa Motasim

Jeddah, Saudi Arabia’s largest coastal city, is positioned between two prominent natural features: the mountain range on its eastern side and the Red Sea on its west. The city faces many challenges central to which is storm water drainage. The natural drainage of the city through its pre-existing wadis, bringing down the rain water from the steep mountain ranges through the low inclining coastal plane and into the sea, has been interrupted in the last few decades by massive road infrastructural projects cutting through the city and interrupting the natural flow. The outcome of these interventions has been excessive flooding calamities, of which the ones in 2009 and 2011 were the most extreme, causing severe damage to infrastructure, property and lives.In light of climate change the intensity of flash floods is expected to increase, placing enormous stress on the city. To control the floods the city has pushed forward heavily engineered solutions, canalizing the rich network of wadis, almost 80 in number, into 4 major concrete channels that discharge the rain water accumulated in the mountains directly into the sea. This solution, which has been prohibitive in cost, has robbed the city of any potential of utilizing the precious supply of rain water. This paper explores the potential of recovering Jeddah’s wadis and creating green corridors across the city. As opposed to engineered solutions which address singular problematics, green infrastructures could provide numerous benefits to the city and the region as a whole.


Sign in / Sign up

Export Citation Format

Share Document