scholarly journals A climatology of sub-seasonal temporal clustering of extreme precipitation in Switzerland and its links to extreme discharge

2021 ◽  
Vol 21 (10) ◽  
pp. 2949-2972
Author(s):  
Alexandre Tuel ◽  
Olivia Martius

Abstract. The successive occurrence of extreme precipitation events on sub-seasonal timescales can lead to large precipitation accumulations and extreme river discharge. In this study, we analyze the sub-seasonal clustering of precipitation extremes in Switzerland and its link to the occurrence and duration of extreme river discharge. We take a statistical approach based on Ripley's K function to characterize the significance of the clustering for each season separately. Temporal clustering of precipitation extremes exhibits a distinct spatiotemporal pattern. It occurs primarily on the northern side of the Alps in winter and on their southern side in fall. Cluster periods notably account for 10 %–16 % of seasonal precipitation in these two regions. The occurrence of a cluster of precipitation extremes generally increases the likelihood and duration of high-discharge events compared to non-clustered precipitation extremes, particularly at low elevations. It is less true in winter, when the magnitude of precipitation extremes is generally lower and much of the precipitation falls as snow. In fall, however, temporal clusters associated with large precipitation accumulations over the southern Alps are found to be almost systematically followed by extreme discharge.

2021 ◽  
Author(s):  
Alexandre Tuel ◽  
Olivia Martius

Abstract. The successive occurrence of extreme precipitation events on a sub-seasonal time-scale can lead to large precipitation accumulations, a classic trigger of flood events. Here we analyse sub-seasonal clustering in Switzerland, first characterizing the tendency of precipitation extremes to cluster in time for each season separately, and second, linking the occurrence of persistent flood events to sub-seasonal clusters of precipitation extremes. We find a distinct spatio-temporal pattern in temporal clustering behavior of precipitation extremes, with temporal clustering occurring on the northern side of the Alps in winter, and on their southern side in fall. In winter, the magnitude of precipitation extremes is generally lower, and much of the precipitation falls as snow, therefore temporal clusters contribute little to the occurrence of persistent flood events. In fall, however, temporal clusters associated with large precipitation accumulations over the southern Alps are found to be almost systematically followed by floods. In addition, discharge magnitudes decrease more slowly after clustered extremes.


2021 ◽  
Author(s):  
Alexandre Tuel ◽  
Bettina Schaefli ◽  
Jakob Zscheischler ◽  
Olivia Martius

Abstract. River discharge is impacted by the sub-seasonal (weekly to monthly) temporal structure of precipitation. One example is the successive occurrence of extreme precipitation events over sub-seasonal timescales, referred to as temporal clustering. Its potential effects on discharge have received little attention. Here, we address this question by analysing discharge observations following extreme precipitation events either clustered in time or occurring in isolation. We rely on two sets of precipitation and discharge data, one centered on Switzerland and the other over Europe. We identify "clustered" extreme precipitation events based on the previous occurrence of another extreme precipitation within a given time window. We find that clustered events are generally followed by a more prolonged discharge response with a larger amplitude. The probability of exceeding the 95th discharge percentile in the five days following an extreme precipitation event is in particular up to twice as high for situations where another extreme precipitation event occurred in the preceding week compared to isolated extreme precipitation events. The influence of temporal clustering decreases as the clustering window increases; beyond 6–8 weeks the difference with non-clustered events is negligible. Catchment area, streamflow regime and precipitation magnitude also modulate the response. The impact of clustering is generally smaller in snow-dominated and large catchments. Additionally, particularly persistent periods of high discharge tend to occur in conjunction with temporal clusters of precipitation extremes.


2021 ◽  
Author(s):  
Jérôme Kopp ◽  
Pauline Rivoire ◽  
S. Mubashshir Ali ◽  
Yannick Barton ◽  
Olivia Martius

<p>Temporal clustering of extreme precipitation events on subseasonal time scales is a type of compound event, which can cause large precipitation accumulations and lead to floods. We present a novel count-based procedure to identify subseasonal clustering of extreme precipitation events. Furthermore, we introduce two metrics to characterise the frequency of subseasonal clustering episodes and their relevance for large precipitation accumulations. The advantage of this approach is that it does not require the investigated variable (here precipitation) to satisfy any specific statistical properties. Applying this methodology to the ERA5 reanalysis data set, we identify regions where subseasonal clustering of annual high precipitation percentiles occurs frequently and contributes substantially to large precipitation accumulations. Those regions are the east and northeast of the Asian continent (north of Yellow Sea, in the Chinese provinces of Hebei, Jilin and Liaoning; North and South Korea; Siberia and east of Mongolia), central Canada and south of California, Afghanistan, Pakistan, the southeast of the Iberian Peninsula, and the north of Argentina and south of Bolivia. Our method is robust with respect to the parameters used to define the extreme events (the percentile threshold and the run length) and the length of the subseasonal time window (here 2 – 4 weeks). The procedure could also be used to identify temporal clustering of other variables (e.g. heat waves) and can be applied on different time scales (e.g. for drought years). <span>For a complementary study on the subseasonal clustering of European extreme precipitation events and its relationship to large-scale atmospheric drivers, please refer to Barton et al.</span></p>


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Xianghu Li ◽  
Qi Hu

Spatiotemporal changes in extreme precipitation at local scales in the context of climate warming are overwhelmingly important for prevention and mitigation of water-related disasters and also provide critical information for effective water resources management. In this study, the variability and trends of extreme precipitation in both time and space in the Poyang Lake basin over the period of 1960–2012 are analyzed. Also, changes in precipitation extremes with topography are investigated, and possible causes are briefly discussed. The results show that extreme precipitation over the Poyang Lake basin is intensified during the last 50 years, especially the increasing trends are more significant before the end of the 1990s. Moreover, high contribution rates of extreme precipitation to the total rainfall (40–60%) indicated that extreme precipitation plays an important role to the total water resources in this area. The precipitation extremes also exhibited a significant spatial dependence in the basin. The northeastern and eastern areas are exposed to high risk of flood disaster with the higher frequency of extreme precipitation events. In addition, the distribution of precipitation extremes had a clear dependence on elevation, and the topography is an important factor affecting the variability of extreme precipitation over the Poyang Lake basin.


2016 ◽  
Vol 17 (2) ◽  
pp. 693-711 ◽  
Author(s):  
Hamed Ashouri ◽  
Soroosh Sorooshian ◽  
Kuo-Lin Hsu ◽  
Michael G. Bosilovich ◽  
Jaechoul Lee ◽  
...  

Abstract This study evaluates the performance of NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA) precipitation product in reproducing the trend and distribution of extreme precipitation events. Utilizing the extreme value theory, time-invariant and time-variant extreme value distributions are developed to model the trends and changes in the patterns of extreme precipitation events over the contiguous United States during 1979–2010. The Climate Prediction Center (CPC) U.S. Unified gridded observation data are used as the observational dataset. The CPC analysis shows that the eastern and western parts of the United States are experiencing positive and negative trends in annual maxima, respectively. The continental-scale patterns of change found in MERRA seem to reasonably mirror the observed patterns of change found in CPC. This is not previously expected, given the difficulty in constraining precipitation in reanalysis products. MERRA tends to overestimate the frequency at which the 99th percentile of precipitation is exceeded because this threshold tends to be lower in MERRA, making it easier to be exceeded. This feature is dominant during the summer months. MERRA tends to reproduce spatial patterns of the scale and location parameters of the generalized extreme value and generalized Pareto distributions. However, MERRA underestimates these parameters, particularly over the Gulf Coast states, leading to lower magnitudes in extreme precipitation events. Two issues in MERRA are identified: 1) MERRA shows a spurious negative trend in Nebraska and Kansas, which is most likely related to the changes in the satellite observing system over time that has apparently affected the water cycle in the central United States, and 2) the patterns of positive trend over the Gulf Coast states and along the East Coast seem to be correlated with the tropical cyclones in these regions. The analysis of the trends in the seasonal precipitation extremes indicates that the hurricane and winter seasons are contributing the most to these trend patterns in the southeastern United States. In addition, the increasing annual trend simulated by MERRA in the Gulf Coast region is due to an incorrect trend in winter precipitation extremes.


2020 ◽  
Author(s):  
Haider Ali ◽  
Hayley Fowler ◽  
Geert Lenderink ◽  
Elizabeth Lewis

<p>The intensity and frequency of extreme precipitation events have increased globally and are likely to rise further under the warming climate. The Clausius-Clapeyron (CC) relationship (scaling) provides a physical basis to understand the relationship of precipitation extremes with temperature. Recent studies have used global sub-daily precipitation data from satellite, reanalysis and climate model outputs (due to the limited availability of long term observed sub-daily data at global scales) and have reported a higher sensitivity of sub-daily precipitation extremes to surface air temperature than for daily extremes. Moreover, at higher temperatures, moisture availability becomes the dominant driver of extreme precipitation, therefore, dewpoint temperature can be a better scaling variable to overcome humidity limitations as compared to air temperature. Here, we used hourly precipitation data from the Global Sub-daily Rainfall (GSDR) dataset and daily dewpoint temperature data (DPT) from the Met Office Hadley Centre observations dataset (HadISD) at 6695 locations across the United States of America, Australia, Europe, Japan, India and Malaysia. We found that more than 60% of locations (scaling estimated for individual location) show scaling greater than 7%/K (CC rate). Moreover, more than 55% of locations across Europe, Japan, Australia and Malaysia show scaling greater than 1.5CC. Furthermore, when locations across selected regions are pooled within similar climatic zones (based on Koppen Geiger classification), scaling curves show around 7%/K scaling. The scaling curves for locations at greater altitude (>400m MSL) are flat compared to locations at relatively lower altitude. The difference in scaling rates at-station and for pooled regions highlight the importance of understanding the thermodynamic and dynamic processes governing precipitation extremes at different spatial scales and indicate that local processes are driving the super-CC sensitivities in most regions.</p>


2020 ◽  
Author(s):  
Gaby Gründemann ◽  
Ruud van der Ent ◽  
Hylke Beck ◽  
Marc Schleiss ◽  
Enrico Zorzetto ◽  
...  

<p>Understanding the magnitude and frequency of extreme precipitation events is a core component of translating climate observations to planning and engineering design. This research aims to capture extreme precipitation return levels at the global scale. A benchmark of the current climate is created using the global Multi-Source Weighted-Ensemble Precipitation (MSWEP-V2, coverage 1979-2017 at 0.1 arc degree resolution) data, by using both classical and novel extreme value distributions. Traditional extreme value distributions, such as the Generalized Extreme Value (GEV) distribution use annual maxima to estimate precipitation extremes, whereas the novel Metastatistical Extreme Value (MEV) distribution also includes the ordinary precipitation events. Due to this inclusion the MEV is less sensitive to local extremes and thus provides a more reliable and smoothened spatial pattern. The global scale application of methods allows analysis of the complete spatial patterns of the extremes. The generated database of precipitation extremes for high return periods is particularly relevant in otherwise data-sparse regions to provide a benchmark for local engineers and planners.</p>


2010 ◽  
Vol 10 (5) ◽  
pp. 1037-1050 ◽  
Author(s):  
A. Toreti ◽  
E. Xoplaki ◽  
D. Maraun ◽  
F. G. Kuglitsch ◽  
H. Wanner ◽  
...  

Abstract. We present an analysis of daily extreme precipitation events for the extended winter season (October–March) at 20 Mediterranean coastal sites covering the period 1950–2006. The heavy tailed behaviour of precipitation extremes and estimated return levels, including associated uncertainties, are derived applying a procedure based on the Generalized Pareto Distribution, in combination with recently developed methods. Precipitation extremes have an important contribution to make seasonal totals (approximately 60% for all series). Three stations (one in the western Mediterranean and the others in the eastern basin) have a 5-year return level above 100 mm, while the lowest value (estimated for two Italian series) is equal to 58 mm. As for the 50-year return level, an Italian station (Genoa) has the highest value of 264 mm, while the other values range from 82 to 200 mm. Furthermore, six series (from stations located in France, Italy, Greece, and Cyprus) show a significant negative tendency in the probability of observing an extreme event. The relationship between extreme precipitation events and the large scale atmospheric circulation at the upper, mid and low troposphere is investigated by using NCEP/NCAR reanalysis data. A 2-step classification procedure identifies three significant anomaly patterns both for the western-central and eastern part of the Mediterranean basin. In the western Mediterranean, the anomalous southwesterly surface to mid-tropospheric flow is connected with enhanced moisture transport from the Atlantic. During ≥5-year return level events, the subtropical jet stream axis is aligned with the African coastline and interacts with the eddy-driven jet stream. This is connected with enhanced large scale ascending motions, instability and leads to the development of severe precipitation events. For the eastern Mediterranean extreme precipitation events, the identified anomaly patterns suggest warm air advection connected with anomalous ascent motions and an increase of the low- to mid-tropospheric moisture. Furthermore, the jet stream position (during ≥5-year return level events) supports the eastern basin being in a divergence area, where ascent motions are favoured. Our results contribute to an improved understanding of daily precipitation extremes in the cold season and associated large scale atmospheric features.


2017 ◽  
Vol 54 (1) ◽  
pp. 117-127 ◽  
Author(s):  
Joe D. Robinson ◽  
Farshid Vahedifard ◽  
Amir AghaKouchak

This study aims to quantitatively assess the impact of extreme precipitation events under current and future climate scenarios on landslides. Rainfall-triggered landslides are analyzed primarily using extreme precipitation estimates, derived using the so-called stationary assumption (i.e., statistics of extreme events will not vary significantly over a long period of time). However, extreme precipitation patterns have shown to vary substantially due to climate change, leading to unprecedented changes in the statistics of extremes. In this study, a nonstationary approach, applied to climate model simulations, is adopted to project the upper bound of future precipitation extremes. Future precipitation estimates are obtained from the coupled model intercomparison project phase 5 (CMIP5) simulations. Baseline (historical) and projected (future) precipitation extremes are obtained for a study area near Seattle, Washington. The precipitation patterns are integrated into a series of fully coupled two-dimensional stress – unsaturated flow finite element simulations. The responses of the baseline and projected models at a 7 day rainfall duration obtained for a 50 year recurrence interval are compared in terms of the local strength reduction factor, displacements, matric suctions, and suction stresses. The results indicate that the usage of historical rainfall data can lead to underestimations in the hydromechanical behavior of natural slopes where locally increased transient seepage rates occur from the upper bound of future extreme precipitation estimates.


2015 ◽  
Vol 6 (2) ◽  
pp. 541-553 ◽  
Author(s):  
M. Messmer ◽  
J. J. Gómez-Navarro ◽  
C. C. Raible

Abstract. Cyclones, which develop over the western Mediterranean and move northeastward are a major source of extreme weather and known to be responsible for heavy precipitation over the northern side of the Alpine range and Central Europe. As the relevant processes triggering these so-called Vb events and their impact on extreme precipitation are not yet fully understood, this study focuses on gaining insight into the dynamics of past events. For this, a cyclone detection and tracking tool is applied to the ERA-Interim reanalysis (1979–2013) to identify prominent Vb situations. Precipitation in the ERA-Interim and the E-OBS data sets is used to evaluate case-to-case precipitation amounts and to assess consistency between the two data sets. Both data sets exhibit high variability in precipitation amounts among different Vb events. While only 23 % of all Vb events are associated with extreme precipitation, around 15 % of all extreme precipitation days (99 percentile) over the northern Alpine region and Central Europe are induced by Vb events, although Vb cyclones are rare events (2.3 per year). To obtain a better understanding of the variability within Vb events, the analysis of the 10 heaviest and lowest precipitation Vb events reveals noticeable differences in the state of the atmosphere. These differences are most pronounced in the geopotential height and potential vorticity field, indicating a much stronger cyclone for heavy precipitation events. The related differences in wind direction are responsible for the moisture transport around the Alps and the orographical lifting along the northern slopes of the Alps. These effects are the main reasons for a disastrous outcome of Vb events, and consequently are absent in the Vb events associated with low precipitation. Hence, our results point out that heavy precipitation related to Vb events is mainly related to large-scale dynamics rather than to thermodynamic processes.


Sign in / Sign up

Export Citation Format

Share Document