scholarly journals Climatology of Vb cyclones, physical mechanisms and their impact on extreme precipitation over Central Europe

2015 ◽  
Vol 6 (2) ◽  
pp. 541-553 ◽  
Author(s):  
M. Messmer ◽  
J. J. Gómez-Navarro ◽  
C. C. Raible

Abstract. Cyclones, which develop over the western Mediterranean and move northeastward are a major source of extreme weather and known to be responsible for heavy precipitation over the northern side of the Alpine range and Central Europe. As the relevant processes triggering these so-called Vb events and their impact on extreme precipitation are not yet fully understood, this study focuses on gaining insight into the dynamics of past events. For this, a cyclone detection and tracking tool is applied to the ERA-Interim reanalysis (1979–2013) to identify prominent Vb situations. Precipitation in the ERA-Interim and the E-OBS data sets is used to evaluate case-to-case precipitation amounts and to assess consistency between the two data sets. Both data sets exhibit high variability in precipitation amounts among different Vb events. While only 23 % of all Vb events are associated with extreme precipitation, around 15 % of all extreme precipitation days (99 percentile) over the northern Alpine region and Central Europe are induced by Vb events, although Vb cyclones are rare events (2.3 per year). To obtain a better understanding of the variability within Vb events, the analysis of the 10 heaviest and lowest precipitation Vb events reveals noticeable differences in the state of the atmosphere. These differences are most pronounced in the geopotential height and potential vorticity field, indicating a much stronger cyclone for heavy precipitation events. The related differences in wind direction are responsible for the moisture transport around the Alps and the orographical lifting along the northern slopes of the Alps. These effects are the main reasons for a disastrous outcome of Vb events, and consequently are absent in the Vb events associated with low precipitation. Hence, our results point out that heavy precipitation related to Vb events is mainly related to large-scale dynamics rather than to thermodynamic processes.

2015 ◽  
Vol 6 (1) ◽  
pp. 907-941
Author(s):  
M. Messmer ◽  
J. J. Gómez-Navarro ◽  
C. C. Raible

Abstract. Cyclones, which develop over the western Mediterranean and move northeastward are a major source of extreme weather and known to be responsible for heavy precipitation over Central Europe and the Alps. As the relevant processes triggering these so-called Vb-events and their impact on extreme precipitation are not yet fully understood, this study focusses on gaining insight into the dynamics of past events. For this, a cyclone detection and tracking tool is applied to the ERA-Interim reanalysis (1979–2013) to identify prominent Vb-situations. Precipitation in the ERA-Interim and the E-OBS datasets is used to evaluate case-to-case precipitation amounts and to assess consistency between the two datasets. Both datasets exhibit high variability in precipitation amounts among different Vb-events. While only 23 % of all Vb-events are associated with extreme precipitation, around 15 % of all extreme precipitation days (99 percentile) over the Alpine region are induced by Vb-events, although Vb-cyclones are rare events (2.3 per year). To obtain a better understanding of the variability within Vb-events, the analysis of the 10 heaviest and lowest precipitation Vb-events reveals noticeable differences in the state of the atmosphere. These differences are most pronounced in the geopotential height and potential vorticity field, indicating a much stronger cyclone for heavy precipitation events. The related differences in wind direction are responsible for the moisture transport around the Alps and the orographical lifting along the Alps. These effects are the main reasons for a disastrous outcome of Vb-events, and consequently are absent in the Vb-events associated with low precipitation. Hence, our results point out that heavy precipitation related to Vb-events is mainly related to large-scale dynamics rather than to thermodynamic processes.


2017 ◽  
Vol 38 ◽  
pp. e497-e517 ◽  
Author(s):  
Michael Hofstätter ◽  
Annemarie Lexer ◽  
Markus Homann ◽  
Günter Blöschl

Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 682 ◽  
Author(s):  
Michael Warscher ◽  
Sven Wagner ◽  
Thomas Marke ◽  
Patrick Laux ◽  
Gerhard Smiatek ◽  
...  

Mountain regions with complex orography are a particular challenge for regional climate simulations. High spatial resolution is required to account for the high spatial variability in meteorological conditions. This study presents a very high-resolution regional climate simulation (5 km) using the Weather Research and Forecasting Model (WRF) for the central part of Europe including the Alps. Global boundaries are dynamically downscaled for the historical period 1980–2009 (ERA-Interim and MPI-ESM), and for the near future period 2020–2049 (MPI-ESM, scenario RCP4.5). Model results are compared to gridded observation datasets and to data from a dense meteorological station network in the Berchtesgaden Alps (Germany). Averaged for the Alps, the mean bias in temperature is about −0.3 °C, whereas precipitation is overestimated by +14% to +19%. R 2 values for hourly, daily and monthly temperature range between 0.71 and 0.99. Temporal precipitation dynamics are well reproduced at daily and monthly scales (R 2 between 0.36 and 0.85), but are not well captured at hourly scale. The spatial patterns, seasonal distributions, and elevation-dependencies of the climate change signals are investigated. Mean warming in Central Europe exhibits a temperature increase between 0.44 °C and 1.59 °C and is strongest in winter and spring. An elevation-dependent warming is found for different specific regions and seasons, but is absent in others. Annual precipitation changes between −4% and +25% in Central Europe. The change signals for humidity, wind speed, and incoming short-wave radiation are small, but they show distinct spatial and elevation-dependent patterns. On large-scale spatial and temporal averages, the presented 5 km RCM setup has in general similar biases as EURO-CORDEX simulations, but it shows very good model performance at the regional and local scale for daily meteorology, and, apart from wind-speed and precipitation, even for hourly values.


2021 ◽  
Vol 21 (10) ◽  
pp. 2949-2972
Author(s):  
Alexandre Tuel ◽  
Olivia Martius

Abstract. The successive occurrence of extreme precipitation events on sub-seasonal timescales can lead to large precipitation accumulations and extreme river discharge. In this study, we analyze the sub-seasonal clustering of precipitation extremes in Switzerland and its link to the occurrence and duration of extreme river discharge. We take a statistical approach based on Ripley's K function to characterize the significance of the clustering for each season separately. Temporal clustering of precipitation extremes exhibits a distinct spatiotemporal pattern. It occurs primarily on the northern side of the Alps in winter and on their southern side in fall. Cluster periods notably account for 10 %–16 % of seasonal precipitation in these two regions. The occurrence of a cluster of precipitation extremes generally increases the likelihood and duration of high-discharge events compared to non-clustered precipitation extremes, particularly at low elevations. It is less true in winter, when the magnitude of precipitation extremes is generally lower and much of the precipitation falls as snow. In fall, however, temporal clusters associated with large precipitation accumulations over the southern Alps are found to be almost systematically followed by extreme discharge.


2013 ◽  
Vol 26 (10) ◽  
pp. 3209-3230 ◽  
Author(s):  
Anthony M. DeAngelis ◽  
Anthony J. Broccoli ◽  
Steven G. Decker

Abstract Climate model simulations of daily precipitation statistics from the third phase of the Coupled Model Intercomparison Project (CMIP3) were evaluated against precipitation observations from North America over the period 1979–99. The evaluation revealed that the models underestimate the intensity of heavy and extreme precipitation along the Pacific coast, southeastern United States, and southern Mexico, and these biases are robust among the models. The models also overestimate the intensity of light precipitation events over much of North America, resulting in fairly realistic mean precipitation in many places. In contrast, heavy precipitation is simulated realistically over northern and eastern Canada, as is the seasonal cycle of heavy precipitation over a majority of North America. An evaluation of the simulated atmospheric dynamics and thermodynamics associated with extreme precipitation events was also conducted using the North American Regional Reanalysis (NARR). The models were found to capture the large-scale physical mechanisms that generate extreme precipitation realistically, although they tend to overestimate the strength of the associated atmospheric circulation features. This suggests that climate model deficiencies such as insufficient spatial resolution, inadequate representation of convective precipitation, and overly smoothed topography may be more important for biases in simulated heavy precipitation than errors in the large-scale circulation during extreme events.


2005 ◽  
Vol 5 (4) ◽  
pp. 505-525 ◽  
Author(s):  
R. Romero ◽  
A. Martín ◽  
V. Homar ◽  
S. Alonso ◽  
C. Ramis

Abstract. The HYDROPTIMET case studies (9–10 June 2000 Catalogne, 8–9 September 2002 Cévennes and 24–26 November 2002 Piémont) appear to encompass a sort of prototype flash-flood situations in the western Mediterranean attending to the relevant synoptic and mesoscale signatures identified on the meteorological charts. In Catalogne, the convective event was driven by a low-pressure system of relatively small dimensions developed over the mediterranean coast of Spain that moved into southern France. For Cévennes, the main circulation pattern was a synoptic-scale Atlantic low which induced a persistent southerly low-level jet (LLJ) over the western Mediterranean, strengthened by the Alps along its western flank, which guaranteed continuous moisture supply towards southern France where the long-lived, quasistationary convective system developed. The long Piémont episode, very representative of the most severe alpine flash flood events, shares some similarities with the Cévennes situation during its first stage in that it was controlled by a southerly moist LLJ associated with a large-scale disturbance located to the west. However, these circulation features were transient aspects and during the second half of the episode the situation was dominated by a cyclogenesis process over the Mediterranean which gave place to a mesoscale-size depression at surface that acted to force new heavy rain over the slopes of the Alps and maritime areas. That is, the Piémont episode can be catalogued as of mixed type with regard to the responsible surface disturbance, evolving from a large-scale pattern with remote action (like Cévennes) to a mesoscale pattern with local action (like Catalogne). A prominent mid-tropospheric trough or cut-off low can be identified in all events prior and during the period of heavy rain, which clearly served as the precursor agent for the onset of the flash-flood conditions and the cyclogenesis at low-levels. Being aware of the uncertainty in the representation of the upper-level disturbance and the necessity to cope with it within the operational context when attempting to issue short to mid-range numerical weather predictions of these high impact weather events, a systematic exploration of the predictability of the three selected case studies subject to uncertainties in the representation of the upper-level precursor disturbance is carried out in this paper. The study is based on an ensemble of mesoscale numerical simulations of each event with the MM5 non-hydrostatic model after perturbing in a systematic way the upper-level disturbance, in the sense of displacing slightly this disturbance upstream/downstream along the zonal direction and intensifying/weakening its amplitude. These perturbations are guided by a previous application of the MM5-adjoint model, which consistently shows high sensitivities of the dynamical control of the heavy rain to the flow configuration about the upper-level disturbance on the day before, thus confirming the precursor characteristics of this agent. The perturbations are introduced to the initial conditions by applying a potential vorticity (PV) inversion procedure to the positive PV anomaly associated with the upper-level disturbance, and then using the inverted fields (wind, temperature and geopotential) to modify under a physically consistent balance the model initial fields. The results generally show that the events dominated by mesoscale low-level disturbances (Catalogne and last stage of the Piémont episode) are very sensitive to the initial uncertainties, such that the heavy rain location and magnitude are in some of the experiments strongly changed in response to the "forecast errors" of the cyclone trajectory, intensity, shape and translational speed. In contrast, the other situations (Cévennes and initial stage of the Piémont episode), dominated by a larger scale system wich basically acts to guarantee the establishment and persistence of the southerly LLJ towards the southern France-north Italy orography, exhibit much higher predictability. That is, the slight modifications in the LLJ direction and intensity encompassed by the ensemble of perturbed forecasts are less critical with respect to the heavy precipitation potential and affected area.


2014 ◽  
Vol 2 (1) ◽  
pp. 427-458 ◽  
Author(s):  
C. M. Grams ◽  
H. Binder ◽  
S. Pfahl ◽  
N. Piaget ◽  
H. Wernli

Abstract. In June 2013 Central Europe was hit by a century flood affecting the Danube and Elbe catchments after a 4 day period of heavy precipitation and causing severe human and economic loss. In this study model analysis and observational data are investigated to reveal the key atmospheric processes that caused the heavy precipitation event. The period preceeding the flood was characterised by a weather regime associated with cool and unusual wet conditions resulting from repeated Rossby wave breaking (RWB). During the event a single RWB established a reversed baroclinicity in the low to mid troposphere in Central Europe with cool air trapped over the Alps and warmer air to the North. The upper-level cut-off resulting from the RWB instigated three consecutive cyclones in eastern Europe that unusually tracked westward during the days of heavy precipitation. Continuous large-scale slantwise ascent in so-called "upside down" warm conveyor belts (WCBs) associated with these cyclones is found as the key process that caused the 4 day heavy precipitation period. Fed by moisture sources from continental evapotranspiration, these WCBs unusually ascended equatorward along the southward sloping moist isentropes. Although "upside down" WCBs are climatologically rare events, they have great potential for causing high impact weather.


1987 ◽  
Vol 42 (2) ◽  
pp. 99-104 ◽  
Author(s):  
U. Eicher

Abstract. 180/160 isotope analyses on carbonate lake Sediments from Central Europe exhibit abrupt, characteristic variations reflecting temperature changes. Between 13,000 and 11,000 years before present, a more or less continuous warm period (Bölling-Alleröd) existed separated from the Postglacial by the Younger Dryas cold phase. Results from 25 Sites in Central Europe, especially the forelands ot the Alps indicate, with the exception of 3 Sites south of the Alps, a synchronous large-scale climatic development. Indirect dating and stratigraphic correlation of the different records was mostly performed by means of pollen analysis. Our results correlate very well with 180/160 measurements on Greenland ice cores, and they agree well with results from deep sea sediment studies in the North Atlantic Ocean covering the Glacial-Postglacial transition.


2010 ◽  
Vol 10 (5) ◽  
pp. 1037-1050 ◽  
Author(s):  
A. Toreti ◽  
E. Xoplaki ◽  
D. Maraun ◽  
F. G. Kuglitsch ◽  
H. Wanner ◽  
...  

Abstract. We present an analysis of daily extreme precipitation events for the extended winter season (October–March) at 20 Mediterranean coastal sites covering the period 1950–2006. The heavy tailed behaviour of precipitation extremes and estimated return levels, including associated uncertainties, are derived applying a procedure based on the Generalized Pareto Distribution, in combination with recently developed methods. Precipitation extremes have an important contribution to make seasonal totals (approximately 60% for all series). Three stations (one in the western Mediterranean and the others in the eastern basin) have a 5-year return level above 100 mm, while the lowest value (estimated for two Italian series) is equal to 58 mm. As for the 50-year return level, an Italian station (Genoa) has the highest value of 264 mm, while the other values range from 82 to 200 mm. Furthermore, six series (from stations located in France, Italy, Greece, and Cyprus) show a significant negative tendency in the probability of observing an extreme event. The relationship between extreme precipitation events and the large scale atmospheric circulation at the upper, mid and low troposphere is investigated by using NCEP/NCAR reanalysis data. A 2-step classification procedure identifies three significant anomaly patterns both for the western-central and eastern part of the Mediterranean basin. In the western Mediterranean, the anomalous southwesterly surface to mid-tropospheric flow is connected with enhanced moisture transport from the Atlantic. During ≥5-year return level events, the subtropical jet stream axis is aligned with the African coastline and interacts with the eddy-driven jet stream. This is connected with enhanced large scale ascending motions, instability and leads to the development of severe precipitation events. For the eastern Mediterranean extreme precipitation events, the identified anomaly patterns suggest warm air advection connected with anomalous ascent motions and an increase of the low- to mid-tropospheric moisture. Furthermore, the jet stream position (during ≥5-year return level events) supports the eastern basin being in a divergence area, where ascent motions are favoured. Our results contribute to an improved understanding of daily precipitation extremes in the cold season and associated large scale atmospheric features.


2019 ◽  
Author(s):  
Alberto Caldas-Alvarez ◽  
Samiro Khodayar

Abstract. Gaining insight on the interaction between atmospheric moisture and convection is determinant to improve the model representation of heavy precipitation, a weather phenomenon that every year brings casualties and important monetary losses in the western Mediterranean region. Given the large variability of atmospheric moisture, an accurate representation of its distribution is expected to reduce the errors related to the representation of moist convective processes. In this study, we assess the sensitivity of precipitating convection and underlying mechanisms during a heavy precipitation event (HyMeX intensive observation period 16) to corrections of the atmospheric moisture spatio-temporal distribution. Sensitivity experiments are carried out by nudging a homogenised data set of GPS-derived Zenith Total Delays (GPS-ZTD) with sub-hourly frequency (10 minutes) in 7 km and 2.8 km simulations with the COSMO-CLM model over the western Mediterranean region. The analysis shows that (a) large atmospheric moisture amounts (Integrated Water Vapour ~ 40 mm) precede heavy precipitation at the affected areas. This occurs 12 h before initiation over southern France and 4 h over Sardinia, north eastern Italy and Corsica (our main study area). (b) We found that the moisture is transported on the one hand, swept by a westerly large-scale front associated with an upper-level low and on the other hand evaporated from the Mediterranean Sea and north Africa. The latter moisture transport occurs in the


Sign in / Sign up

Export Citation Format

Share Document