scholarly journals Seismic triggering of landslides. Part B: Simulation of dynamic failure processes

2003 ◽  
Vol 3 (6) ◽  
pp. 663-682 ◽  
Author(s):  
H.-B. Havenith ◽  
A. Strom ◽  
F. Calvetti ◽  
D. Jongmans

Abstract. From field observations it is possible to establish correlations between geological conditions and landslide occurrence. However, in general, it is difficult to assess the affect of individual factors on slope instability because of their mutual interaction. In addition, the dynamic effect of propagating seismic waves significantly increases the complexity of the slope stability problem. Wave diffraction, reflection and focusing effects are dependent on local geological conditions and make it difficult to analyse dynamic sliding mechanisms using field observations alone. As a consequence, in order to examine the influence of various geological and seismic factors on slope movements, it is often necessary to produce numerical models. This paper describes the results of such models as applied to two case studies in Kyrgyzstan: the Ananevo rockslide, located in granite, and the Suusamyr debris slump-flow, situated within soft sediments (see Part A: Havenith et al., 2003). Discrete element modelling (UDEC), adapted both to the discontinuous character of fractured rock and to the heterogeneity of layered mediums, was used. This permitted simulation of deformation mechanisms, including seismically induced bending, block tilting, and slip. Particular attention was paid to the interaction between deformation mechanisms, site-specific amplification effects, and subsurface structure.

2005 ◽  
Vol 5 (6) ◽  
pp. 993-1001 ◽  
Author(s):  
P. Bertolo ◽  
G. F. Wieczorek

Abstract. This study compares documented debris flow runout distances with numerical simulations in the Yosemite Valley of California, USA, where about 15% of historical events of slope instability can be classified as debris flows and debris slides (Wieczorek and Snyder, 2004). To model debris flows in the Yosemite Valley, we selected six streams with evidence of historical debris flows; three of the debris flow deposits have single channels, and the other three split their pattern in the fan area into two or more channels. From field observations all of the debris flows involved coarse material, with only very small clay content. We applied the one dimensional DAN (Dynamic ANalysis) model (Hungr, 1995) and the two-dimensional FLO-2D model (O'Brien et al., 1993) to predict and compare the runout distance and the velocity of the debris flows observed in the study area. As a first step, we calibrated the parameters for the two softwares through the back analysis of three debris- flows channels using a trial-and-error procedure starting with values suggested in the literature. In the second step we applied the selected values to the other channels, in order to evaluate their predictive capabilities. After parameter calibration using three debris flows we obtained results similar to field observations We also obtained a good agreement between the two models for velocities. Both models are strongly influenced by topography: we used the 30 m cell size DTM available for the study area, that is probably not accurate enough for a highly detailed analysis, but it can be sufficient for a first screening.


Lithosphere ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 322-332 ◽  
Author(s):  
Donald M. Fisher ◽  
John N. Hooker ◽  
David O.S. Oakley

Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 232 ◽  
Author(s):  
Qunlei Zhang ◽  
Ruifu Yuan ◽  
Shen Wang ◽  
Dongyin Li ◽  
Huamin Li ◽  
...  

A particle element approach based on continuum-discontinuum element method (CDEM) is applied to optimize the automated top-coal drawing techniques in extra-thick coal seams. Numerical models with 100 drawing openings are created according to the field engineering geological conditions of Tongxin coal mine in China. An automated coal drawing control approach in numerical modelling based on time criterion is proposed. The rock mixed rate, top-coal recovery rate and the variance of the drawn top coal amount are counted and set as the statistical indicators to evaluate the top-coal drawing techniques. The traditional top-coal drawing criterion, “rocks appear, close the opening”, leads to low recovery of top coal and waste of coal resources in extra-thick coal seams, significantly weakening the transport stability and efficiency of the scraper conveyer. A three-round unequal time top-coal drawing technique is proposed for automated top-coal drawing. Three drawing openings, corresponding to the three top-coal drawing rounds respectively, are working at the same time; in each round, the top-coal drawing sequence is from the first drawing opening at one end of the working face to last drawing opening at another end; the drawing time of each round is not equal and increases with the round number. The numerical inversion approach of iteration steps can be used for real top-coal drawing time estimation and automated drawing process design to achieve a better top coal drawing effect, while the exact time for each drawing round still needs to be corrected by engineering practice.


2011 ◽  
Vol 368-373 ◽  
pp. 1642-1648
Author(s):  
Gui Ling Ding

Three-dimensional finite element analysis should be used in stability analysis of slope because it can overcome the short advantages of two-dimensional finite element and can simulate the complex topographic and geological conditions. Based on the large-scale triaxial shear test, the modified Duncan-Chang model is established. Based on strength reduction elasto-plastic finite element, stability of high fill embankment was studied with three-dimensional finite element method considering the complex terrain conditions. Study results suggest that plastic strain and displacement mutant of slip surface node can be a sign of slope instability as a whole. At the same time calculation of three-dimensional finite element also does not converge. Therefore, it can be slope instability criterion calculate whether the finite element static analysis converges or not. On the other hand, stability safety factor of high fill embankment under three-dimensional conditions is larger than that of two-dimensional conditions, which shows that boundary conditions of high fill embankment enhance its stability.


2012 ◽  
Vol 226-228 ◽  
pp. 1365-1370
Author(s):  
Qi Xia Liu ◽  
Liang Fan

This article selected a typical loess slope engineering as the research object, and through the characteristics of loess landslide, landslide environmental geological conditions, the formation mechanism of the landslide study of the loess area of urban slope instability factors, loess slope stability of the calculation method and reinforcement measures. This paper adopts the theory of Morgenstern-Price to analyzing the stability of the slope, referencing with Sweden finite slice method, Simplified Bishop method, Simplify Janbu method. The reinforcement adopts the technology of possessed anchor to disposing the loess slope, and has good Practice effect. The loess slope stability study area has a large reference.


2012 ◽  
Vol 91 (3) ◽  
pp. 357-372 ◽  
Author(s):  
B.G. Ruessink ◽  
M. Boers ◽  
P.F.C. van Geer ◽  
A.T.M. de Bakker ◽  
A. Pieterse ◽  
...  

AbstractAn equilibrium dune-erosion model is used every six years to assess the capability of the most seaward dune row on the Dutch Wadden islands to withstand a storm with a 1 in 10,000 probability for a given year. The present-day model is the culmination of numerous laboratory experiments with an initial cross-shore profile based on the central Netherlands coast. Large parts of the dune coast of the Wadden islands have substantially different dune and cross-shore profile characteristics than found along this central coast, related to the presence of tidal channels, ebb-tidal deltas, beach-plains and strong coastal curvature. This complicated coastal setting implies that the predictions of the dune-erosion model are sometimes doubtful; accordingly, a shift towards a process-based dune-erosion model has been proposed. A number of research findings based on recent laboratory and field studies highlight only few of the many challenges that need to be faced in order to develop and test such a model. Observations of turbulence beneath breaking waves indicate the need to include breaking-wave effects in sand transport equations, while current knowledge of infragravity waves, one of the main sand transporting mechanisms during severe storm conditions, is strongly challenged by laboratory and field observations on gently sloping beaches that are so typical of the Wadden islands. We argue that in-situ and remote-sensing field observations, laboratory experiments and numerical models need to be the pillars of Earth Scientific research in the Wadden Sea area to construct a meaningful process-based dune-erosion tool.


2020 ◽  
Author(s):  
Stefano Tinti ◽  
Glauco Gallotti ◽  
Thomas Zieher ◽  
Jan Pfeiffer ◽  
Filippo Zaniboni ◽  
...  

<p>In the framework of the OPERANDUM (OPEn-air laboRAtories for Nature baseD solUtions to Manage environmental risks) project, modelling the effect of the Nature Based Solutions (NBS) on selected open-air laboratories plays a determinant role. In this work, we focus the attention on the Vögelsberg (Tyrol, Austria) landslide case study, located in the municipality of Wattens. The 0.25 km<sup>2</sup> active part of the slope shows annual movement rates in the order of 3.5-6 cm/a. Recent studies provided evidence that the motion is mainly driven by variations of the groundwater level. The latter are related to prolonged moist periods during which excessive rainfall or snow melt water can infiltrate and act on the geo-hydrological system. With the aim of enhancing the slope stability employing NBS, a detailed analysis of the hydrogeology and the slope characteristics have been carried out, obtaining the required technical parameters describing the involved soil material. Furthermore, a slope stability analysis by means of different numerical models has been performed. Results prove that variations of the groundwater level in the range of 1-2 m can strongly affect the stability of the slope. Thus, specific NBS should aim at reducing the amount of infiltrating water. Examples of such NBS include the adaptation of forest management and land use planning, the introduction and re-activation of drainage channels and the sealing of leaky streams and channels. Beside the effects of the variation of the groundwater level, results have proved that the slope could fail under the action of a moderate seismic load. In this scenario, it is likely that the effects of the NBS would be insufficient to maintain the slope intact.</p>


2010 ◽  
Vol 5 (3) ◽  
pp. 227-228
Author(s):  
Syunsuke Ikeda ◽  
Shinji Egashira ◽  
Takahisa Mizuyama

Sediment induced disasters have been studied in a wide variety of research fields ranging from social to natural science, with many interesting results. This special issue provides engineers and scientists with an opportunity to share knowledge and experience in engineering research concerning mass sediment movement and related disasters. To clarify this issue’s objectives and encourage submissions, topics have been discussed based on the needs, activities, and possible contributors classified into four categories: 1) Results based on field and literature surveys and data analysis for catastrophic, recent and historical mass movement, and corresponding disaster events. 2) Results based on field surveys and data analysis for recent usual mass movement events and corresponding disasters resulting from rainfall, earthquakes, volcanic activity, and glacier lakes and natural landslide dam events. 3) Mechanics and numerical modeling for mass movement. 4) Measures against sediment-induced and similar disasters. Last August, we began inviting submissions on these themes just as Typhoon Morakot slowly crossed Taiwan, causing historically significant rainfall events in southern Taiwan involving numerous landslides and debris flows and precipitated casualties, landscape changes, channel bed variations, etc., similar to the catastrophic sediment events occurring in Venezuela in 1999. Two papers describe what happened in Taiwan and Venezuela, providing advice on possible measures against such abnormal catastrophes. Three contributions describe historical catastrophes involving mountain collapse based on analysis of the literature, topography and field surveys, and numerical models. A total of 11 papers have been submitted, 4 of which concern applicability of constitutive equations for debris flow, numerical models for landslide occurrence due to rain fall and flood processes due to rapid landslide dam erosion, and sediment issues resulting from glacier lake outburst flooding. Two submissions focus on corrective measures. All papers have been reviewed, revised, and accepted for publications, and we believe this special issue will stimulate future studies and prove useful in practical and scientific fields. We heartily thank all of the authors undergoing the review process, and express our sincere appreciation to the distinguished reviewers, without whose invaluable aid this issue would not have been possible.


Sign in / Sign up

Export Citation Format

Share Document