scholarly journals Effects of strongly eddying oceans on multidecadal climate variability in the Community Earth System Model

Ocean Science ◽  
2021 ◽  
Vol 17 (5) ◽  
pp. 1251-1271
Author(s):  
André Jüling ◽  
Anna von der Heydt ◽  
Henk A. Dijkstra

Abstract. Climate variability on multidecadal timescales appears to be organized in pronounced patterns with clear expressions in sea surface temperature, such as the Atlantic Multidecadal Variability and the Pacific Decadal Oscillation. These patterns are now well studied both in observations and global climate models and are important in the attribution of climate change. Results from CMIP5 models have indicated large biases in these patterns with consequences for ocean heat storage variability and the global mean surface temperature. In this paper, we use two multi-century Community Earth System Model simulations at coarse (1∘) and fine (0.1∘) ocean model horizontal grid spacing to study the effects of the representation of mesoscale ocean flows on major patterns of multidecadal variability. We find that resolving mesoscale ocean flows both improves the characteristics of the modes of variability with respect to observations and increases the amplitude of the heat content variability in the individual ocean basins. In the strongly eddying model, multidecadal variability increases compared to sub-decadal variability. This shift of spectral power is seen in sea surface temperature indices, basin-scale surface heat fluxes, and the global mean surface temperature. This implies that the current CMIP6 model generation, which predominantly does not resolve the ocean mesoscale, may systematically underestimate multidecadal variability.

2020 ◽  
Author(s):  
André Jüling ◽  
Anna von der Heydt ◽  
Henk A. Dijkstra

Abstract. Climate variability on multidecadal time scales appears to be organized in pronounced patterns with clear expressions in sea surface temperature, such as the Atlantic Multidecadal Variability and the Pacific Decadal Oscillation. These patterns are now well studied both in observations and global climate models and are important in the attribution of climate change. Results from CMIP5 models have indicated large biases in these patterns with consequences for ocean heat storage variability and eventually the global mean surface temperature. In this paper, we use two multi-century Community Earth System Model simulations at coarse (1°) and fine (0.1°) ocean model horizontal grid spacing to study the effects of the representation of mesoscale ocean flows on major patterns of multidecadal variability. We find that resolving mesoscale ocean flows both improves the characteristics of the modes of variability with respect to observations and increases the amplitude of the heat content variability in the individual ocean basins. The effect on the global mean surface temperature is relatively minor.


2017 ◽  
Author(s):  
Jian Cao ◽  
Bin Wang ◽  
Young-Min Yang ◽  
Libin Ma ◽  
Juan Li ◽  
...  

Abstract. The Nanjing University of Information Science and Technology Earth System Model version 3 (NESM v3) has been developed, aiming to provide a numerical modeling platform for cross-disciplinary earth system studies, project future Earth's climate and environment changes, as well conduct subseasonal-to-seasonal prediction. While the previous model version NESM v1 simulates well the internal modes of climate variability, it has no vegetation dynamics and suffers considerable radiative energy imbalance at the top of the atmosphere and surface, resulting in large biases in the global mean surface air temperature, which limit its utility to simulate past and project future climate changes. The NESM v3 upgraded the atmospheric and land surface model components and improved physical parameterization and conservation of coupling variables. Here we describe the new version's basic features and how the major improvements were made. We demonstrate the v3 model's fidelity and suitability to address the global climate variability and change issues. The 500-year PI experiment shows negligible trends in the net heat flux at the top of atmosphere and the Earth surface. Consistently, the simulated global mean surface air temperature, land surface temperature and sea surface temperature (SST) are all in a quasi-equilibrium state. The conservation of global water is demonstrated by the stable evolution of the global mean precipitation, sea surface salinity (SSS) and sea water salinity. The sea ice extents (SIEs), as a major indication of high latitude climate, also maintain a balanced state. The simulated spatial patterns of the mean outgoing longwave radiation, SST, precipitation, SSS fields are realistic, but the model suffers from a cold bias in the North Atlantic, a warm bias in the Southern Ocean and associated deficient Antarctic sea ice area, as well as a delicate sign of the double ITCZ syndrome. The estimate radiative forcing of quadrupling carbon dioxide is about 7.24 W m-2, yielding a climate sensitivity feedback parameter of −0.98 W m-2 K-1, and the equilibrium climate sensitivity is 3.69 K. The transient climate response from the 1 pct/year increasing CO2 experiment is 2.16 K. The model's performance on internal modes and responses to external forcing during the historical period will be documented in an accompanying paper.


2018 ◽  
Vol 11 (7) ◽  
pp. 2975-2993 ◽  
Author(s):  
Jian Cao ◽  
Bin Wang ◽  
Young-Min Yang ◽  
Libin Ma ◽  
Juan Li ◽  
...  

Abstract. The Nanjing University of Information Science and Technology Earth System Model version 3 (NESM v3) has been developed, aiming to provide a numerical modeling platform for cross-disciplinary Earth system studies, project future Earth climate and environment changes, and conduct subseasonal-to-seasonal prediction. While the previous model version NESM v1 simulates the internal modes of climate variability well, it has no vegetation dynamics and suffers considerable radiative energy imbalance at the top of the atmosphere and surface, resulting in large biases in the global mean surface air temperature, which limits its utility to simulate past and project future climate changes. The NESM v3 has upgraded atmospheric and land surface model components and improved physical parameterization and conservation of coupling variables. Here we describe the new version's basic features and how the major improvements were made. We demonstrate the v3 model's fidelity and suitability to address global climate variability and change issues. The 500-year preindustrial (PI) experiment shows negligible trends in the net heat flux at the top of atmosphere and the Earth surface. Consistently, the simulated global mean surface air temperature, land surface temperature, and sea surface temperature (SST) are all in a quasi-equilibrium state. The conservation of global water is demonstrated by the stable evolution of the global mean precipitation, sea surface salinity (SSS), and sea water salinity. The sea ice extents (SIEs), as a major indication of high-latitude climate, also maintain a balanced state. The simulated spatial patterns of the energy states, SST, precipitation, and SSS fields are realistic, but the model suffers from a cold bias in the North Atlantic, a warm bias in the Southern Ocean, and associated deficient Antarctic sea ice area, as well as a delicate sign of the double ITCZ syndrome. The estimated radiative forcing of quadrupling carbon dioxide is about 7.24 W m−2, yielding a climate sensitivity feedback parameter of −0.98 W m−2 K−1, and the equilibrium climate sensitivity is 3.69 K. The transient climate response from the 1 % yr−1 CO2 (1pctCO2) increase experiment is 2.16 K. The model's performance on internal modes and responses to external forcing during the historical period will be documented in an accompanying paper.


Author(s):  
André Jüling ◽  
Anna von der Heydt ◽  
Henk Dijkstra

<div> <div>Climate variability on decadal to multidecadal time scales appears to be organized in pronounced patterns with clear expressions in sea surface temperature, such as the Pacific Multidecadal Variability and the Atlantic Multidecadal Variability. These patterns are now well studied both in observations and in global climate models and are important in the attribution of climate change. Results in CMIP5 models have indicated large biases in these patterns with consequences for ocean heat storage variability and eventually the global mean surface temperature.</div> <div>We use two multi-century Community Earth System Model simulations at coarse (1°) and fine (0.1°) ocean model horizontal grid spacing and study the effect of the representation of mesoscale ocean flows on major patterns of multidecadal variability. We find that resolving mesoscale ocean flows both improves the characteristics of the modes of variability with respect to observations and increases the amplitude of the heat content variability in the individual ocean basins. However, the effect on the global mean surface temperature is relatively minor.</div> </div>


2016 ◽  
Vol 9 (7) ◽  
pp. 2459-2470 ◽  
Author(s):  
Ryan Reynolds Neely III ◽  
Andrew J. Conley ◽  
Francis Vitt ◽  
Jean-François Lamarque

Abstract. Here we describe an updated parameterization for prescribing stratospheric aerosol in the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM1). The need for a new parameterization is motivated by the poor response of the CESM1 (formerly referred to as the Community Climate System Model, version 4, CCSM4) simulations contributed to the Coupled Model Intercomparison Project 5 (CMIP5) to colossal volcanic perturbations to the stratospheric aerosol layer (such as the 1991 Pinatubo eruption or the 1883 Krakatau eruption) in comparison to observations. In particular, the scheme used in the CMIP5 simulations by CESM1 simulated a global mean surface temperature decrease that was inconsistent with the GISS Surface Temperature Analysis (GISTEMP), NOAA's National Climatic Data Center, and the Hadley Centre of the UK Met Office (HADCRUT4). The new parameterization takes advantage of recent improvements in historical stratospheric aerosol databases to allow for variations in both the mass loading and size of the prescribed aerosol. An ensemble of simulations utilizing the old and new schemes shows CESM1's improved response to the 1991 Pinatubo eruption. Most significantly, the new scheme more accurately simulates the temperature response of the stratosphere due to local aerosol heating. Results also indicate that the new scheme decreases the global mean temperature response to the 1991 Pinatubo eruption by half of the observed temperature change, and modelled climate variability precludes statements as to the significance of this change.


2013 ◽  
Vol 9 (4) ◽  
pp. 1519-1542 ◽  
Author(s):  
R. Ohgaito ◽  
T. Sueyoshi ◽  
A. Abe-Ouchi ◽  
T. Hajima ◽  
S. Watanabe ◽  
...  

Abstract. The importance of evaluating models through paleoclimate simulations is becoming more recognized in efforts to improve climate projection. To evaluate an integrated Earth System Model, MIROC-ESM, we performed simulations in time-slice experiments for the mid-Holocene (6000 yr before present, 6 ka) and preindustrial (1850 AD, 0 ka) periods under the protocol of the Coupled Model Intercomparison Project 5/Paleoclimate Modelling Intercomparison Project 3. We first give an overview of the simulated global climates by comparing with simulations using a previous version of the MIROC model (MIROC3), which is an atmosphere–ocean coupled general circulation model. We then comprehensively discuss various aspects of climate change with 6 ka forcing and how the differences in the models can affect the results. We also discuss the representation of the precipitation enhancement at 6 ka over northern Africa. The precipitation enhancement at 6 ka over northern Africa according to MIROC-ESM does not differ greatly from that obtained with MIROC3, which means that newly developed components such as dynamic vegetation and improvements in the atmospheric processes do not have significant impacts on the representation of the 6 ka monsoon change suggested by proxy records. Although there is no drastic difference between the African monsoon representations of the two models, there are small but significant differences in the precipitation enhancement over the Sahara in early summer, which can be related to the representation of the sea surface temperature rather than the vegetation coupling in MIROC-ESM. Because the oceanic parts of the two models are identical, the difference in the sea surface temperature change is ultimately attributed to the difference in the atmospheric and/or land modules, and possibly the difference in the representation of low-level clouds.


2019 ◽  
Vol 54 (1-2) ◽  
pp. 793-806 ◽  
Author(s):  
Jonathan Eliashiv ◽  
Aneesh C. Subramanian ◽  
Arthur J. Miller

AbstractA new prototype coupled ocean–atmosphere Ensemble Kalman Filter reanalysis product, the Community Earth System Model using the Data Assimilation Research Testbed (CESM-DART), is studied by comparing its tropical climate variability to other reanalysis products, available observations, and a free-running version of the model. The results reveal that CESM-DART produces fields that are comparable in overall performance with those of four other uncoupled and coupled reanalyses. The clearest signature of differences in CESM-DART is in the analysis of the Madden–Julian Oscillation (MJO) and other tropical atmospheric waves. MJO energy is enhanced over the free-running CESM as well as compared to the other products, suggesting the importance of the surface flux coupling at the ocean–atmosphere interface in organizing convective activity. In addition, high-frequency Kelvin waves in CESM-DART are reduced in amplitude compared to the free-running CESM run and the other products, again supportive of the oceanic coupling playing a role in this difference. CESM-DART also exhibits a relatively low bias in the mean tropical precipitation field and mean sensible heat flux field. Conclusive evidence of the importance of coupling on data assimilation performance will require additional detailed direct comparisons with identically formulated, uncoupled data assimilation runs.


2016 ◽  
Vol 29 (19) ◽  
pp. 6973-6991 ◽  
Author(s):  
Laura M. Ciasto ◽  
Camille Li ◽  
Justin J. Wettstein ◽  
Nils Gunnar Kvamstø

Abstract This study investigates the sensitivity of the North Atlantic storm track to future changes in local and global sea surface temperature (SST) and highlights the role of SST changes remote to the North Atlantic. Results are based on three related coupled climate models: the Community Climate System Model, version 4 (CCSM4), the Community Earth System Model, version 1 (Community Atmosphere Model, version 5) [CESM1(CAM5)], and the Norwegian Earth System Model, version 1 (intermediate resolution) (NorESM1-M). Analysis reveals noticeable intermodel differences in projected storm-track changes from the coupled simulations [i.e., the difference in 200-hPa eddy activity between the representative concentration pathway 8.5 (RCP8.5) and historical scenarios]. In the CCSM4 coupled simulations, the North Atlantic storm track undergoes a poleward shift and eastward extension. In CESM1(CAM5), the storm-track change is dominated by an intensification and eastward extension. In NorESM1-M, the storm-track change is characterized by a weaker intensification and slight eastward extension. Atmospheric experiments driven only by projected local (North Atlantic) SST changes from the coupled models fail to reproduce the magnitude and structure of the projected changes in eddy activity aloft and zonal wind from the coupled simulations. Atmospheric experiments driven by global SST and sea ice changes do, however, reproduce the eastward extension. Additional experiments suggest that increasing greenhouse gas (GHG) concentrations do not directly influence storm-track changes in the coupled simulations, although they do through GHG-induced changes in SST. The eastward extension of the North Atlantic storm track is hypothesized to be linked to western Pacific SST changes that influence tropically forced Rossby wave trains, but further studies are needed to isolate this mechanism from other dynamical adjustments to global warming.


2009 ◽  
Vol 22 (22) ◽  
pp. 6120-6141 ◽  
Author(s):  
David W. J. Thompson ◽  
John M. Wallace ◽  
Phil D. Jones ◽  
John J. Kennedy

Abstract Global-mean surface temperature is affected by both natural variability and anthropogenic forcing. This study is concerned with identifying and removing from global-mean temperatures the signatures of natural climate variability over the period January 1900–March 2009. A series of simple, physically based methodologies are developed and applied to isolate the climate impacts of three known sources of natural variability: the El Niño–Southern Oscillation (ENSO), variations in the advection of marine air masses over the high-latitude continents during winter, and aerosols injected into the stratosphere by explosive volcanic eruptions. After the effects of ENSO and high-latitude temperature advection are removed from the global-mean temperature record, the signatures of volcanic eruptions and changes in instrumentation become more clearly apparent. After the volcanic eruptions are subsequently filtered from the record, the residual time series reveals a nearly monotonic global warming pattern since ∼1950. The results also reveal coupling between the land and ocean areas on the interannual time scale that transcends the effects of ENSO and volcanic eruptions. Globally averaged land and ocean temperatures are most strongly correlated when ocean leads land by ∼2–3 months. These coupled fluctuations exhibit a complicated spatial signature with largest-amplitude sea surface temperature perturbations over the Atlantic Ocean.


2015 ◽  
Vol 96 (8) ◽  
pp. 1351-1367 ◽  
Author(s):  
P. Swapna ◽  
M. K. Roxy ◽  
K. Aparna ◽  
K. Kulkarni ◽  
A. G. Prajeesh ◽  
...  

Abstract With the goal of building an Earth system model appropriate for detection, attribution, and projection of changes in the South Asian monsoon, a state-of-the-art seasonal prediction model, namely the Climate Forecast System version 2 (CFSv2) has been adapted to a climate model suitable for extended climate simulations at the Indian Institute of Tropical Meteorology (IITM), Pune, India. While the CFSv2 model has been skillful in predicting the Indian summer monsoon (ISM) on seasonal time scales, a century-long simulation with it shows biases in the ocean mixed layer, resulting in a 1.5°C cold bias in the global mean surface air temperature, a cold bias in the sea surface temperature (SST), and a cooler-than-observed troposphere. These biases limit the utility of CFSv2 to study climate change issues. To address biases, and to develop an Indian Earth System Model (IITM ESMv1), the ocean component in CFSv2 was replaced at IITM with an improved version, having better physics and interactive ocean biogeochemistry. A 100-yr simulation with the new coupled model (with biogeochemistry switched off) shows substantial improvements, particularly in global mean surface temperature, tropical SST, and mixed layer depth. The model demonstrates fidelity in capturing the dominant modes of climate variability such as the ENSO and Pacific decadal oscillation. The ENSO–ISM teleconnections and the seasonal leads and lags are also well simulated. The model, a successful result of Indo–U.S. collaboration, will contribute to the IPCC’s Sixth Assessment Report (AR6) simulations, a first for India.


Sign in / Sign up

Export Citation Format

Share Document