scholarly journals A mosaic of phytoplankton responses across Patagonia, the southeast Pacific and the southwest Atlantic to ash deposition and trace metal release from the Calbuco volcanic eruption in 2015

Ocean Science ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. 561-578
Author(s):  
Maximiliano J. Vergara-Jara ◽  
Mark J. Hopwood ◽  
Thomas J. Browning ◽  
Insa Rapp ◽  
Rodrigo Torres ◽  
...  

Abstract. Following the eruption of the Calbuco volcano in April 2015, an extensive ash plume spread across northern Patagonia and into the southeast Pacific and southwest Atlantic oceans. Here, we report on field surveys conducted in the coastal region receiving the highest ash load following the eruption (Reloncaví Fjord). The fortuitous location of a long-term monitoring station in Reloncaví Fjord provided data to evaluate inshore phytoplankton bloom dynamics and carbonate chemistry during April–May 2015. Satellite-derived chlorophyll a measurements over the ocean regions affected by the ash plume in May 2015 were obtained to determine the spatial–temporal gradients in the offshore phytoplankton response to ash. Additionally, leaching experiments were performed to quantify the release from ash into solution of total alkalinity, trace elements (dissolved Fe, Mn, Pb, Co, Cu, Ni and Cd) and major ions (F−, Cl−, SO42-, NO3-, Li+, Na+, NH4+, K+, Mg2+ and Ca2+). Within Reloncaví Fjord, integrated peak diatom abundances during the May 2015 austral bloom were approximately 2–4 times higher than usual (up to 1.4 × 1011 cells m−2, integrated to 15 m depth), with the bloom intensity perhaps moderated due to high ash loadings in the 2 weeks following the eruption. Any mechanistic link between ash deposition and the Reloncaví diatom bloom can, however, only be speculated on due to the lack of data immediately preceding and following the eruption. In the offshore southeast Pacific, a short-duration phytoplankton bloom corresponded closely in space and time to the maximum observed ash plume, potentially in response to Fe fertilisation of a region where phytoplankton growth is typically Fe limited at this time of year. Conversely, no clear fertilisation on the same timescale was found in the area subject to an ash plume over the southwest Atlantic where the availability of fixed nitrogen is thought to limit phytoplankton growth. This was consistent with no significant release of fixed nitrogen (NOx or NH4) from Calbuco ash. In addition to the release of nanomolar concentrations of dissolved Fe from ash suspended in seawater, it was observed that low loadings (< 5 mg L−1) of ash were an unusually prolific source of Fe(II) into chilled seawater (up to 1.0 µmol Fe g−1), producing a pulse of Fe(II) typically released mainly during the first minute after addition to seawater. This release would not be detected (as Fe(II) or dissolved Fe) following standard leaching protocols at room temperature. A pulse of Fe(II) release upon addition of Calbuco ash to seawater made it an unusually efficient dissolved Fe source. The fraction of dissolved Fe released as Fe(II) from Calbuco ash (∼ 18 %–38 %) was roughly comparable to literature values for Fe released into seawater from aerosols collected over the Pacific Ocean following long-range atmospheric transport.

2020 ◽  
Author(s):  
Maximiliano J. Vergara-Jara ◽  
Mark J. Hopwood ◽  
Thomas J. Browning ◽  
Insa Rapp ◽  
Rodrigo Torres ◽  
...  

Abstract. Following the April 2015 eruption of the Calbuco volcano, an extensive ash plume spread across northern Patagonia and into the SE Pacific and SW Atlantic Ocean. Here we report the results of field surveys conducted in the marine region receiving the highest ash load following the eruption (Reloncaví Fjord). The fortuitous location of a long-term monitoring station in Reloncaví Fjord provided data to evaluate inshore phytoplankton bloom dynamics and carbonate chemistry during April–May 2015. Satellite derived chlorophyll-a measurements over the ocean regions affected by the ash plume in May 2015 were obtained to determine the spatial-temporal gradient in offshore phytoplankton response to ash. Additionally, leaching experiments were performed to quantify the release of total alkalinity, trace elements (Fe, Mn, Pb, Co, Cu, Ni and Cd) and major ions (Fl, Cl, SO4, NO3, Li, Na, NH4, K, Mg, Ca) from ash into solution. Within Reloncaví Fjord, integrated peak diatom abundances during the May 2015 austral bloom were higher than usual (up to 1.4 × 1011 cells m−2, integrated to 15 m depth), with the bloom intensity perhaps moderated due to high ash loadings in the two weeks following the eruption. In the offshore SE Pacific, a short duration phytoplankton bloom corresponded closely in space and time to the maximum observed ash plume, potentially in response to Fe-fertilization of a region where phytoplankton growth is typically Fe-limited at this time of year. Conversely, no clear fertilization was found in the area subject to an ash plume over the SW Atlantic where the availability of fixed nitrogen is thought to limit phytoplankton growth which was consistent with no significant release of fixed nitrogen from ash. In addition to release of nanomolar concentrations of dissolved Fe from ash suspended in seawater, it was observed that low loadings (


2021 ◽  
Vol 13 (4) ◽  
pp. 675
Author(s):  
Afonso Ferreira ◽  
Vanda Brotas ◽  
Carla Palma ◽  
Carlos Borges ◽  
Ana C. Brito

Phytoplankton bloom phenology studies are fundamental for the understanding of marine ecosystems. Mismatches between fish spawning and plankton peak biomass will become more frequent with climate change, highlighting the need for thorough phenology studies in coastal areas. This study was the first to assess phytoplankton bloom phenology in the Western Iberian Coast (WIC), a complex coastal region in SW Europe, using a multisensor long-term ocean color remote sensing dataset with daily resolution. Using surface chlorophyll a (chl-a) and biogeophysical datasets, five phenoregions (i.e., areas with coherent phenology patterns) were defined. Oceanic phytoplankton communities were seen to form long, low-biomass spring blooms, mainly influenced by atmospheric phenomena and water column conditions. Blooms in northern waters are more akin to the classical spring bloom, while blooms in southern waters typically initiate in late autumn and terminate in late spring. Coastal phytoplankton are characterized by short, high-biomass, highly heterogeneous blooms, as nutrients, sea surface height, and horizontal water transport are essential in shaping phenology. Wind-driven upwelling and riverine input were major factors influencing bloom phenology in the coastal areas. This work is expected to contribute to the management of the WIC and other upwelling systems, particularly under the threat of climate change.


2011 ◽  
Vol 9 (4) ◽  
pp. 831-838 ◽  
Author(s):  
Marilú Estalles ◽  
Nidia Marina Coller ◽  
Edgardo Ernesto Di Giácomo ◽  
María Raquel Perier

The Electric ray Discopyge tschudii is distributed in the Southwest Atlantic from southern Brazil to southern Argentina and in the Southeast Pacific from Peru to southern Chile. The main threat to this species is fishing. Discopyge tschudii is noncommercial and individuals caught are discarded on board. The present study analyzes the distribution and the morphological and reproductive characteristics of this ray in San Matías Gulf (SMG), Argentina. A total of 1087 individuals were analyzed. The species presented an aggregate distribution, with the main concentrations in the northern and eastern areas of SMG, at depths below 100 m. Males ranged from 9 to 43 cm and females from 11 to 38 cm. The species presented sexual dimorphism. Males were larger and heavier than females and also matured at larger sizes. Size at 50% of maturity was estimated at 30 cm for males and 21 cm for females. A total of 199 embryos were sampled and the proportion of sexes showed no significant differences from the expected 1:1. The number of embryos per female varied from 1 to 12. The most frequent values were 2 and 5. Length at birth was estimated at 82.17 ± 3.87 mm. Based on our findings, we hypothesize that the electric ray D. tschudii completes its reproductive cycle in SMG.


2021 ◽  
Author(s):  
Uliana Kazakova ◽  
Alexander Polukhin

&lt;p&gt;The Kara Sea receives about 55 % of the total continental runoff to the Siberian Arctic. Water of the Yenisei and Ob Rivers with low salinity (mineralization), flowing into the sea, forms a surface desalinated layer. The desalinated layer spreads over the sea area under the influence of hydrological and meteorological factors. Meltwater generated by the melting of marine and riverine ice and precipitation contribute to the formation of a surface desalinated layer along with continental runoff.&lt;/p&gt;&lt;p&gt;Determining the amount of fresh water is not accurate enough if only the salinity of surface water is considered. It is possible to identify riverine water and meltwater using hydrochemical proxies. The ratio of the major ions in seawater differs from that in riverine and meltwater. River waters are characterized by an increased content of silicate and reduced values of total alkalinity. At the same time, it is possible to identify the waters of the Ob and Yenisei Rivers by the estimated values of the total alkalinity and dissolved inorganic carbon obtained during the research expeditions to the Kara sea from 1993 to 2020.&lt;/p&gt;&lt;p&gt;The calculation of the parts of waters of different origin is done as a result of solving a system of equations. It includes the salinity and alkalinity values of the observed surface waters and those presumably involved in the mixing process. The salinity and alkalinity values of meltwater are taken as 0 and 134 &amp;#181;M respectively.&lt;/p&gt;&lt;p&gt;The total contribution of the Ob and Yenisei runoff ranges from 20 to 90% as it approaches the estuarine areas. The correlation coefficient between the proportion of river water and the salinity of the surface layer is quite high, it is equal to -0.9. This characterizes the inverse linear relationship. The separate contribution of the waters of the Yenisei differs from the contribution of the waters of the Ob, which is related to the hydrological conditions of the rivers.&lt;/p&gt;&lt;p&gt;The contribution of meltwater to the formation of the surface layer of the Kara Sea did not exceed 20%, with the exception of the coastal zone of the Novaya Zemlya. In this coastal zone, meltwater provides the greatest contribution compared to the other sources, which is associated with glacial runoff.&lt;/p&gt;&lt;p&gt;The work is implemented in the framework of the state assignment of the Shirshov Institute of Oceanology RAS (theme No. 0149-2019-0008), with the support of the Russian Scientific Foundation (project &amp;#8470; 19-17-00196) and the grant of President of Russian Federation &amp;#8470; MK-860.2020.5.&lt;/p&gt;


1984 ◽  
Vol 30 (104) ◽  
pp. 44-48 ◽  
Author(s):  
A.G. Thomas ◽  
R. Raiswell

AbstractVariations in dissolved cations, total alkalinity, sulphate, and field pH are recorded for subglacial melt and bulk melt waters (those emerging from the portal) at Argentière (France), in peak and recession flow conditions. Calcium and bicarbonate are the major ions and the bulk melt waters are demonstrated to have acquired solutes by weathering and dissolution in a system open to atmospheric carbon dioxide. Subglacial melt waters have closed-system characteristics, are close to saturation with calcite and quartz, and must be in near-equilibrium with weathered particulates. Recession-flow bulk melt waters are chemically similar to subglacial melt but have open-system characteristics, either due to re-equilibration with the atmosphere for ground-water mixing.


2015 ◽  
Vol 72 (6) ◽  
pp. 1926-1941 ◽  
Author(s):  
Rica Mae Enriquez ◽  
John R. Taylor

Abstract About 60 years ago, Sverdrup formalized the critical depth hypothesis to explain the timing of the spring phytoplankton bloom in terms of the depth of the surface mixed layer. In recent years, a number of refinements and alternatives to the critical depth hypothesis have been proposed, including the critical turbulence hypothesis which states that a bloom can occur when turbulent mixing is sufficiently weak, irrespective of the mixed layer depth. Here, we examine the relative influence of wind-driven mixing and net surface heating on phytoplankton growth. Of particular interest is whether wind-driven mixing can delay the spring bloom after winter convection gives way to net surface warming. We address these questions using high-resolution large-eddy simulations (LES) coupled with a simple phytoplankton model. We also describe an analytical phytoplankton model with a formulation for the turbulent mixing based on the LES results. For a constant, prescribed surface heat flux, net phytoplankton growth is seen when the windstress is smaller than a critical value. Similarly, for a constant windstress, a critical heat flux separates cases with growing and decaying phytoplankton populations. Using the LES results, we characterize the critical windstress and critical heat flux in terms of other physical and biological parameters and propose a simple expression for each based on the analysis of the analytical model. Phytoplankton growth begins when the mixing depth shoals above the critical depth, consistent with the critical depth hypothesis. Our results provide a framework to interpret blooms in other conditions where both the depth and the intensity of turbulent mixing might be crucial factors in influencing phytoplankton growth.


2021 ◽  
Author(s):  
Abdourazakou MAMAN HASSAN ◽  
Arzu Ersoy

Abstract The aim of this study is to determine the origins of salinization and the main hydrogeochemical process that controls the chemistry of Çarşamba coastal aquifer in Turkey. Therefore, a total of 33 groundwater samples and three seawater samples were analyzed in the coastal region of Çarşamba Plain in July 2019 and for these samples’ physical parameters, major ions and environmental isotopes (δ18O, δ2H and 3H) values were determined. Piper, Chadha, Gibbs diagrams and Stuyfzand Classification Systems were used to determine the origins of salinization and the key hydrogeochemical process controlling the groundwater chemistry. According to Stuyfzand classification system, the study showed that the freshwater and fresh-brackish water main types are the most widespread in the study area. Six water subtypes were observed in the study area that include CaHCO3, CaMix, NaMix, NaCl, NaHCO3 and MgHCO3. In addition, the subtypes CaMix indicated the locations of the transition zone, where the groundwater rich in Ca and HCO3 and gradually enriched in Na changes from CaMix with HCO3 as dominant anion to eventually CaCl and NaCl subtypes. Furthermore, the subtypes NaMix, NaHCO3 and MgHCO3 showed the locations of the transition zone where the flushing of the saline aquifer by freshwater takes place. All groundwater samples from study area had a positive cation exchange code and show that four hydrogeochemical facies composed of CaHCO3; Ca-Mg-Cl and NaCl and NaHCO3. Besides, groundwater samples have been influenced by two main mechanisms: the water-rock interaction and evaporation-crystallization. According to δ18O, δ2H and 3H analysis, the water samples have meteoric origin, shallow circulation, and a short residence time.


Sign in / Sign up

Export Citation Format

Share Document