scholarly journals Shelf sea tidal currents and mixing fronts determined from ocean glider observations

2017 ◽  
Author(s):  
Peter M. F. Sheehan ◽  
Sarah L. Hughes ◽  
Barbara Berx ◽  
Alejandro Gallego ◽  
Rob A. Hall ◽  
...  

Abstract. Tides and tidal mixing fronts are of fundamental importance to understanding shelf sea dynamics and ecosystems. We use dive-average currents from a two-month (12th October–2nd December 2013) glider deployment along a zonal hydrographic section in the northern North Sea to determine M2 and S2 tidal velocities, which agree well with tidal velocities measured by current meters and extracted from a tide model. The method enhances the utility of gliders as an ocean-observing platform, particularly in regions where tide models are known to be limited. We use the glider-derived tidal velocities to investigate tidal controls on the location of a tidal mixing front. During the deployment, the front moves offshore at a rate of 0.51 km day−1. During the first period of the deployment (i.e. until mid November), the front's position is explained by the local balance between tidal mixing and surface heat fluxes: as heat is lost to the atmosphere, full-depth tidal mixing is able to occur in progressively deeper water. In the latter half of the deployment, the output of a simple one-dimensional model suggests that the front should have decayed. By comparing this model output to hydrographic observations from the glider, we attribute the persistence of the front beyond this period to the advection of cold, saline Atlantic-origin water across the deeper portion of the section. The glider captures the transition of the front from being one controlled by the balance between tidal mixing and surface heating, to being one controlled by advection of buoyancy. Fronts in shelf regions with oceanic influence may be geographically fixed and persist during periods of little to no thermal stratification, with implications for the thermohaline circulation of shelf seas.

Ocean Science ◽  
2018 ◽  
Vol 14 (2) ◽  
pp. 225-236 ◽  
Author(s):  
Peter M. F. Sheehan ◽  
Barbara Berx ◽  
Alejandro Gallego ◽  
Rob A. Hall ◽  
Karen J. Heywood ◽  
...  

Abstract. Tides and tidal mixing fronts are of fundamental importance to understanding shelf sea dynamics and ecosystems. Ocean gliders enable the observation of fronts and tide-dominated flows at high resolution. We use dive-average currents from a 2-month (12 October–2 December 2013) glider deployment along a zonal hydrographic section in the north-western North Sea to accurately determine M2 and S2 tidal velocities. The results of the glider-based method agree well with tidal velocities measured by current meters and with velocities extracted from the TPXO tide model. The method enhances the utility of gliders as an ocean-observing platform, particularly in regions where tide models are known to be limited. We then use the glider-derived tidal velocities to investigate tidal controls on the location of a front repeatedly observed by the glider. The front moves offshore at a rate of 0.51 km day−1. During the first part of the deployment (from mid-October until mid-November), results of a one-dimensional model suggest that the balance between surface heat fluxes and tidal stirring is the primary control on frontal location: as heat is lost to the atmosphere, full-depth mixing is able to occur in progressively deeper water. In the latter half of the deployment (mid-November to early December), a front controlled solely by heat fluxes and tidal stirring is not predicted to exist, yet a front persists in the observations. We analyse hydrographic observations collected by the glider to attribute the persistence of the front to the boundary between different water masses, in particular to the presence of cold, saline, Atlantic-origin water in the deeper portion of the section. We combine these results to propose that the front is a hybrid front: one controlled in summer by the local balance between heat fluxes and mixing and which in winter exists as the boundary between water masses advected to the north-western North Sea from diverse source regions. The glider observations capture the period when the front makes the transition from its summertime to wintertime state. Fronts in other shelf sea regions with oceanic influence may exhibit similar behaviour, with controlling processes and locations changing over an annual cycle. These results have implications for the thermohaline circulation of shelf seas.


2015 ◽  
Vol 8 (10) ◽  
pp. 3163-3178 ◽  
Author(s):  
R. Marsh ◽  
A. E. Hickman ◽  
J. Sharples

Abstract. An established one-dimensional (1-D) model of Shelf Sea Physics and Primary Production (S2P3) is adapted for flexible use in selected regional settings over selected periods of time. This Regional adaptation of S2P3, the S2P3-R framework (v1.0), can be efficiently used to investigate physical and biological phenomena in shelf seas that are strongly controlled by vertical processes. These include spring blooms that follow the onset of stratification, tidal mixing fronts that seasonally develop at boundaries between mixed and stratified water, and sub-surface chlorophyll maxima that persist throughout summer. While not representing 3-D processes, S2P3-R reveals the horizontal variation of the key 1-D (vertical) processes. S2P3-R should therefore only be used in regions where horizontal processes – including mean flows, eddy fluxes and internal tides – are known to exert a weak influence in comparison with vertical processes. In such cases, S2P3-R may be used as a highly versatile research tool, alongside more complex and computationally expensive models. In undergraduate oceanography modules and research projects, the model serves as an effective practical tool for linking theory and field observations. Three different regional configurations of S2P3-R are described, illustrating a range of diagnostics, evaluated where practical with observations. The model can be forced with daily meteorological variables for any selected year in the reanalysis era (1948 onwards). Example simulations illustrate the considerable extent of synoptic-to-interannual variability in the physics and biology of shelf seas. In discussion, the present limitations of S2P3-R are emphasised, and future developments are outlined.


2015 ◽  
Vol 8 (1) ◽  
pp. 673-713
Author(s):  
R. Marsh ◽  
A. E. Hickman ◽  
J. Sharples

Abstract. An established 1-dimensional model of Shelf Sea Physics and Primary Production (S2P3) is adapted for regional use in realistic geographical domains over selected years, for selected regions. The S2P3-R framework (v1.0) can be used to efficiently map 3-D physical and biological structures in shelf seas, in particular the tidal mixing fronts that seasonally develop at boundaries between mixed and stratified water. The model has primarily been developed for undergraduate oceanography modules and research projects, providing a practical tool for linking theory and field observations, but it is also useful as an investigative research tool alongside more complex and computationally expensive models. Four different configurations of S2P3-R are described and evaluated, illustrating a range of diagnostics, evaluated where practical with available observations. The model can be forced with daily meteorological variables for any selected year in the reanalysis era (1948 onwards). Example simulations illustrate the considerable extent of synoptic-to-interannual variability in the physics and biology of shelf seas. In discussion, the present limitations of S2P3-R are emphasized, and future model developments are outlined.


2020 ◽  
Author(s):  
Anıl Akpınar ◽  
Matthew Palmer

<p>On-set of spring stratification is one of the physical factors that influence the productivity of the continental shelves. Atmospheric convective mixing determines the on-set of spring stratification. This is particularly important in seasonally stratified shelf seas, where stratification constrain nutrient injection to the water column. Higher productivity in stratified period relies on intermittent diapycnal mixing events. Thus, the on-set and intensity of stratification is important for the functioning of the shelf-sea ecosystem. In this study, we investigate on-set of stratification, and its relation with the atmospheric conditions as well as imprints of sub-mesoscale features. We use high resolution in-situ measurements from 10 glider deployments, spanning over 18 months in the central North Sea. Focusing on two consecutive winters, we present year to year variability in the timing and intensity of stratification. An early initiation of stratification is observed in 2018/2019, which is also intense compared to the previous year of 2017/2018. We find that reduced wind stress and net air-sea heat fluxes result in an early on-set of stratification in 2018/2019. In February 2019, intermittent increases in chlorophyll are observed, corresponding to a minimum in sea-to-air heat loss. Similarly, in 2019 an earlier spring bloom is observed. We investigate this period with NEMO model outputs at 7km resolution (AMM7) and show a similar response, emphasizing the influence of atmospheric variability on dynamics of the shelf-sea.   </p>


2020 ◽  
Author(s):  
Ai-Jun Pan ◽  
Fang-fang Kuang ◽  
Kai Li ◽  
Xu Dong

<p>A field survey revealed a rare realization of upwelling event in the northwestern Hainan Island (UNWHI) on July 24, 2015. Model experiments suggest that the UNWHI is not locally generated, but can be treated as northward extension of the upwelling southwest off Hainan Island (USWHI) under favorable wind conditions. Therefore, presence of the USWHI is vital for the UNWHI occurrence. Tidal mixing is testified to be the primary driving force for the USWHI, whilst southerly winds plays an essential role in the induction of the UNWHI. Moreover, it is demonstrated that the UNWHI is not a stable, but intermittent coastal upwelling system. Shallow basin of the Beibu Gulf makes the interior circulation vulnerable to local monsoon changes. Given the favorable southerly winds, a cyclonic gyre northwest off Hainan Island will be induced and which, leads to northward coastal current and consequently, the UNWHI is to be formed due to the northward transport of the USWHI. Conversely, the UNWHI vanishes during northerly winds period, because the basin-scale anticyclonic gyre results in a southward current west off the Hainan Island and which, acts to push the upwelled water of the USWHI offshore and away from the northwestern Hainan Island. In addition, our diagnostics indicates that contributions from surface heat fluxes to the UNWHI occurrence is negligible. Besides, it also reminds us that application of a high-frequency, much closer to reality wind field is necessary for the coastal upwelling simulation. </p>


2021 ◽  
Author(s):  
Ezra Eisbrenner ◽  
Léon Chafik

<p>Knowledge about water-mass properties is critical to understanding how ocean climate variability impacts the shelf seas. Disentangling the origin of shelf sea water-masses and associated driving mechanisms is, therefore, a significant step towards improving the predictive skill related to water-mass evolution. Especially more conservative water-mass properties, even of surface waters, have the potential to reveal links between the shelf seas and large-scale ocean circulation regimes when traced back to their origin. The northern North Sea for example as the main gateway for water-masses to one of Europe's largest shelf sea areas is largely supplied by water-masses from the open North Atlantic, a connection which can be seen from, e.g., sea surface salinity.</p><p>The aim of this study is to identify the origin of northern North Sea water-masses and distinguish pathway variability relative to the subpolar gyre regimes. This is done using Lagrangian trajectories, calculated using satellite-derived velocity fields. The results of the Lagrangian statistics mainly indicate that on inter-annual time-scales the North Atlantic subpolar gyre strength largely influences the water-masses found in the North Sea. The relation is found to originate from varying pathways and therefore origin. We conclude that on inter-annual time scales the subpolar gyre strength is a good proxy and skillful predictor of water-mass variability in the North Sea.</p>


2017 ◽  
Vol 37 (14) ◽  
pp. 4757-4767 ◽  
Author(s):  
Cunbo Han ◽  
Yaoming Ma ◽  
Xuelong Chen ◽  
Zhongbo Su

2013 ◽  
Vol 141 (8) ◽  
pp. 2869-2896 ◽  
Author(s):  
Matthew C. Brewer ◽  
Clifford F. Mass ◽  
Brian E. Potter

Abstract Despite the significant impacts of the West Coast thermal trough (WCTT) on West Coast weather and climate, questions remain regarding its mesoscale structure, origin, and dynamics. Of particular interest is the relative importance of terrain forcing, advection, and surface heating on WCTT formation and evolution. To explore such questions, the 13–16 May 2007 WCTT event was examined using observations and simulations from the Weather Research and Forecasting (WRF) Model. An analysis of the thermodynamic energy equation for these simulations was completed, as well as sensitivity experiments in which terrain or surface fluxes were removed or modified. For the May 2007 event, vertical advection of potential temperature is the primary driver of local warming and WCTT formation west of the Cascades. The downslope flow that drives this warming is forced by easterly flow associated with high pressure over British Columbia, Canada. When the terrain is removed from the model, the WCTT does not form and high pressure builds over the northwest United States. When the WCTT forms on the east side of the Cascades, diabatic heating dominates over the other terms in the thermodynamic energy equation, with warm advection playing a small role. If surface heat fluxes are neglected, an area of low pressure remains east of the Cascades, though it is substantially attenuated.


2015 ◽  
Vol 32 (6) ◽  
pp. 1144-1162 ◽  
Author(s):  
Adrian Sescu ◽  
Charles Meneveau

AbstractEffects of atmospheric thermal stratification on the asymptotic behavior of very large wind farms are studied using large-eddy simulations (LES) and a single-column model for vertical distributions of horizontally averaged field variables. To facilitate comparisons between LES and column modeling based on Monin–Obukhov similarity theory, the LES are performed under idealized conditions of statistical stationarity in time and fully developed conditions in space. A suite of simulations are performed for different thermal stratification levels and the results are used to evaluate horizontally averaged vertical profiles of velocity, potential temperature, vertical turbulent momentum, and heat flux. Both LES and the model show that the stratification significantly affects the atmospheric boundary layer structure, its height, and the surface fluxes. However, the effects of the wind farm on surface heat fluxes are found to be relatively small in both LES and the single-column model. The surface fluxes are the result of two opposing trends: an increase of mixing in wakes and a decrease in mixing in the region below the turbines due to reduced momentum fluxes there for neutral and unstable cases, or relatively unchanged shear stresses below the turbines in the stable cases. For the considered cases, the balance of these trends yields a slight increase in surface flux magnitude for the stable and near-neutral unstable cases, and a very small decrease in flux magnitude for the strongly unstable cases. Moreover, thermal stratification is found to have a negligible effect on the roughness scale as deduced from the single-column model, consistent with the expectations of separation of scale.


Sign in / Sign up

Export Citation Format

Share Document