scholarly journals Eddy-induced Track Reversal and Upper Ocean Physical-Biogeochemical Response of Tropical Cyclone Madi in the Bay of Bengal

2019 ◽  
Author(s):  
Riyanka Roy Chowdhury ◽  
S. Prasanna Kumar ◽  
Arun Chakraborty

Abstract. The life cycle of the tropical cyclone Madi in the southwestern Bay of Bengal (BoB) during 6th to 12th December 2013 was studied using a suite of ocean and atmospheric data. Madi formed as a depression on 6th December and intensified into a very severe cyclonic storm by 8th December. What was distinct about Madi was its (1) swift weakening from very severe cyclone to a severe cyclone while moving towards north on 9th, (2) abrupt track reversal close to 180-degree in a southwestward direction on 10th, and (3) rapid decay in the open ocean by 12th December while still moving southwestward. Using both in situ and remote sensing data, we show that oceanic cyclonic eddies played a leading role in the ensuing series of events that followed its genesis. The sudden weakening of the cyclone before its track reversal was facilitated by the oceanic cyclonic (cold-core) eddy, which reduced the ocean heat content and cooled the upper ocean through upward eddy-pumping of subsurface waters. When Madi moved over cyclonic eddy-core, its further northward movement was arrested. Subsequently, the prevailing northeasterly winds assisted the slow moving system to change its track to a southwesterly path. While travelling towards southwestward direction, the system rapidly decayed when it passed over the regions of cyclonic eddies located near the western boundary of the BoB. Though Madi was a category-2 cyclone, it had a profound impact on the physical and biogeochemical state of the upper ocean. Cyclone-induced enhancement in the chlorophyll a ranged from 5 to 7-fold, while increase in the net primary productivity ranged from 2.5 to 8-fold. Similarly, the CO2 out-gassing into the atmosphere showed a 3.7-fold increase compared to the pre-cyclone values. Our study points to the crucial role oceanic eddies play in the life cycle of cyclone in the BoB. Eddies being ubiquitous and tropical cyclones occur twice a year in the BoB, there is an urgent need to incorporate them in the models for the better prediction of the cyclone track and intensity.

2012 ◽  
Vol 42 (9) ◽  
pp. 1377-1401 ◽  
Author(s):  
Wei Mei ◽  
Claudia Pasquero

Abstract The role of baroclinic instability in the restratification of the upper ocean after the passage of a tropical cyclone (TC) is determined by means of numerical simulations. Using a regional ocean model, the Regional Ocean Modeling System (ROMS), a high-resolution three-dimensional simulation that includes the process of baroclinic instability and is initialized with moderate-amplitude eddy structures reproduces the satellite-observed decay rate of the TC-induced sea surface temperature (SST) anomaly and is also in qualitative agreement with published observations after the passage of Hurricane Fabian in 2003 that showed decaying cold and warm anomalies located in the climatological mixed layer (CML) and upper thermocline, respectively. The model ocean is restratified after approximately one month with a net heat gain in the water column due to anomalous air–sea heat fluxes. The model shows, however, that vertical heat fluxes associated with baroclinic instability dominate over air–sea heat fluxes in restoring the CML heat content during the first month. A comparison with two-dimensional simulations that exclude baroclinic adjustment further highlights the importance of baroclinic instability: it can not only input a considerable amount of heat into the CML, but also establish strong stratification there, inhibiting the downward penetration of heat contributed by diabatic heating at the surface; both effects hasten the recovery of the SST. Additional experiments were performed to examine the sensitivity of the model results to changes in Newtonian cooling rate, changes in the magnitude of the eddy structures used to initialize the simulation, and changes in poststorm wind strength; the results indicate that, although some of them may have a significant effect on the recovery time of the SST, their influence on the contribution of baroclinic instability to the recovery of the CML heat content is modest. However, the contribution of baroclinic instability exhibits pronounced positive dependence on the depth of the mixing layer relative to the CML depth and the relative size of the area with unperturbed water. Its dependence on the shape of the spatial variation of the mixing depth is relatively weak but in a more complicated manner. These dependencies are consistent with those predicted by a simple front adjustment model, whereas the latter also suggest that the contribution of baroclinic instability is independent of the prestorm stratification below the CML. Overall, the idealized simulations in this study suggest that, for a typical situation in the real ocean, baroclinic instability can account for approximately 50% of the full recovery of the CML heat content, whereas under specific conditions the contribution can be significantly smaller. Those estimates provide a limit to the maximum net warming of the water column after the initial mixing event and thus have important implications regarding estimating the long-term effect of TCs on the upper-ocean heat budget.


2022 ◽  
Vol 12 (3) ◽  
pp. 85-100
Author(s):  
Md Shakil Hossain ◽  
Md Abdus Samad ◽  
SM Arif Hossen ◽  
SM Quamrul Hassan ◽  
MAK Malliak

An attempt has been carried out to assess the efficacy of the Weather Research and Forecasting (WRF) model in predicting the genesis and intensification events of Very Severe Cyclonic Storm (VSCS) Fani (26 April – 04 May 2019) over the Bay of Bengal (BoB). WRF model has been conducted on a single domain of 10 km horizontal resolution using the Global Data Assimilation System (GDAS) FNL (final) data (0.250 × 0.250). According to the model simulated outcome analysis, the model is capable of predicting the Minimum Sea Level Pressure (MSLP) and Maximum Sustainable Wind Speed (MSWS) pattern reasonably well, despite some deviations. The model has forecasted the Lowest Central Pressure (LCP) of 919 hPa and the MSWS of 70 ms-1 based on 0000 UTC of 26 April. Except for the model run based on 0000 UTC of 26 April, the simulated values of LCP are relatively higher than the observations. According to the statistical analysis, MSLP and MSWS at 850 hPa level demonstrate a significantly greater influence on Tropical Cyclone (TC) formation and intensification process than any other parameters. The model can predict the intensity features well enough, despite some uncertainty regarding the proper lead time of the model run. Reduced lead time model run, particularly 24 to 48 hr, can be chosen to forecast the genesis and intensification events of TC with minimum uncertainty. Journal of Engineering Science 12(3), 2021, 85-100


2008 ◽  
Vol 23 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Michelle Mainelli ◽  
Mark DeMaria ◽  
Lynn K. Shay ◽  
Gustavo Goni

Abstract Research investigating the importance of the subsurface ocean structure on tropical cyclone intensity change has been ongoing for several decades. While the emergence of altimetry-derived sea height observations from satellites dates back to the 1980s, it was difficult and uncertain as to how to utilize these measurements in operations as a result of the limited coverage. As the in situ measurement coverage expanded, it became possible to estimate the upper oceanic heat content (OHC) over most ocean regions. Beginning in 2002, daily OHC analyses have been generated at the National Hurricane Center (NHC). These analyses are used qualitatively for the official NHC intensity forecast, and quantitatively to adjust the Statistical Hurricane Intensity Prediction Scheme (SHIPS) forecasts. The primary purpose of this paper is to describe how upper-ocean structure information was transitioned from research to operations, and how it is being used to generate NHC’s hurricane intensity forecasts. Examples of the utility of this information for recent category 5 hurricanes (Isabel, Ivan, Emily, Katrina, Rita, and Wilma from the 2003–05 hurricane seasons) are also presented. Results show that for a large sample of Atlantic storms, the OHC variations have a small but positive impact on the intensity forecasts. However, for intense storms, the effect of the OHC is much more significant, suggestive of its importance on rapid intensification. The OHC input improved the average intensity errors of the SHIPS forecasts by up to 5% for all cases from the category 5 storms, and up to 20% for individual storms, with the maximum improvement for the 72–96-h forecasts. The qualitative use of the OHC information on the NHC intensity forecasts is also described. These results show that knowledge of the upper-ocean thermal structure is fundamental to accurately forecasting intensity changes of tropical cyclones, and that this knowledge is making its way into operations. The statistical results obtained here indicate that the OHC only becomes important when it has values much larger than that required to support a tropical cyclone. This result suggests that the OHC is providing a measure of the upper ocean’s influence on the storm and improving the forecast.


2008 ◽  
Vol 21 (1) ◽  
pp. 149-162 ◽  
Author(s):  
Claudia Pasquero ◽  
Kerry Emanuel

Abstract Strong winds affect mixing and heat distribution in the upper ocean. In turn, upper-ocean heat content affects the evolution of tropical cyclones. Here the authors explore the global effects of the interplay between tropical cyclones and upper-ocean heat content. The modeling study suggests that, for given atmospheric thermodynamic conditions, regimes characterized by intense (with deep mixing and large upper-ocean heat content) and by weak (with shallow mixing and small heat content) tropical cyclone activity can be sustained. A global general circulation ocean model is used to study the transient evolution of a heat anomaly that develops following the strong mixing induced by the passage of a tropical cyclone. The results suggest that at least one-third of the anomaly remains in the tropical region for more than one year. A simple atmosphere–ocean model is then used to study the sensitivity of maximum wind speed in a cyclone to the oceanic vertical temperature profile. The feedback between cyclone activity and upper-ocean heat content amplifies the sensitivity of modeled cyclone power dissipation to atmospheric thermodynamic conditions.


2008 ◽  
Vol 136 (7) ◽  
pp. 2576-2591 ◽  
Author(s):  
G. R. Halliwell ◽  
L. K. Shay ◽  
S. D. Jacob ◽  
O. M. Smedstad ◽  
E. W. Uhlhorn

Abstract To simulate tropical cyclone (TC) intensification, coupled ocean–atmosphere prediction models must realistically reproduce the magnitude and pattern of storm-forced sea surface temperature (SST) cooling. The potential for the ocean to support intensification depends on the thermal energy available to the storm, which in turn depends on both the temperature and thickness of the upper-ocean warm layer. The ocean heat content (OHC) is used as an index of this potential. Large differences in available thermal energy associated with energetic boundary currents and ocean eddies require their accurate initialization in ocean models. Two generations of the experimental U.S. Navy ocean nowcast–forecast system based on the Hybrid Coordinate Ocean Model (HYCOM) are evaluated for this purpose in the NW Caribbean Sea and Gulf of Mexico prior to Hurricanes Isidore and Lili (2002), Ivan (2004), and Katrina (2005). Evaluations are conducted by comparison to in situ measurements, the navy’s three-dimensional Modular Ocean Data Assimilation System (MODAS) temperature and salinity analyses, microwave satellite SST, and fields of OHC and 26°C isotherm depth derived from satellite altimetry. Both nowcast–forecast systems represent the position of important oceanographic features with reasonable accuracy. Initial fields provided by the first-generation product had a large upper-ocean cold bias because the nowcast was initialized from a biased older-model run. SST response in a free-running Isidore simulation is improved by using initial and boundary fields with reduced cold bias generated from a HYCOM nowcast that relaxed model fields to MODAS analyses. A new climatological initialization procedure used for the second-generation nowcast system tended to reduce the cold bias, but the nowcast still could not adequately reproduce anomalously warm conditions present before all storms within the first few months following nowcast initialization. The initial cold biases in both nowcast products tended to decrease with time. A realistic free-running HYCOM simulation of the ocean response to Ivan illustrates the critical importance of correctly initializing both warm-core rings and cold-core eddies to correctly simulate the magnitude and pattern of SST cooling.


2019 ◽  
Vol 49 (5) ◽  
pp. 1201-1228 ◽  
Author(s):  
Yun Qiu ◽  
Weiqing Han ◽  
Xinyu Lin ◽  
B. Jason West ◽  
Yuanlong Li ◽  
...  

AbstractThis study investigates the impact of salinity stratification on the upper-ocean response to a category 5 tropical cyclone, Phailin, that crossed the northern Bay of Bengal (BOB) from 8 to 13 October 2013. A drastic increase of up to 5.0 psu in sea surface salinity (SSS) was observed after Phailin’s passage, whereas a weak drop of below 0.5°C was observed in sea surface temperature (SST). Rightward biases were apparent in surface current and SSS but not evident in SST. Phailin-induced SST variations can be divided into the warming and cooling stages, corresponding to the existence of the thick barrier layer (BL) and temperature inversion before and erosion after Phailin’s passage, respectively. During the warming stage, SST increased due to strong entrainment of warmer water from the BL, which overcame the cooling induced by surface heat fluxes and horizontal advection. During the cooling stage, the entrainment and upwelling dominated the SST decrease. The preexistence of the BL, which reduced entrainment cooling by ~1.09°C day−1, significantly weakened the overall Phailin-induced SST cooling. The Hybrid Coordinate Ocean Model (HYCOM) experiments confirm the crucial roles of entrainment and upwelling in the Phailin-induced dramatic SSS increase and weak SST decrease. Analyses of upper-ocean stratification associated with 16 super TCs that occurred in the BOB during 1980–2015 show that intensifications of 13 TCs were associated with a thick isothermal layer, and 5 out of the 13 were associated with a thick BL. The calculation of TC intensity with and without considering subsurface temperature demonstrates the importance of large upper-ocean heat storage in TC growth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sourav Sil ◽  
Avijit Gangopadhyay ◽  
Glen Gawarkiewicz ◽  
Saikat Pramanik

AbstractIn recent years, the seasonal patterns of Tropical Cyclones (TC) in the Bay of Bengal have been shifting. While tropical depressions have been common in March–May (spring), they typically have been relatively weaker than the TCs during October–December. Here we show that the spatial pattern of recent warming trends during the last two decades in the southwestern Bay has allowed for stronger springtime pre-monsoon cyclones such as Amphan (May 2020, Super Cyclone) and Fani (April–May 2019, Extremely Severe Cyclone). The tracks of the pre-monsoon cyclones shifted westward, concurrent with an increasing rate of warming. This shift allowed both Fani and Amphan tracks to cross the northeastward warm Western Boundary Current (WBC) and associated warm anti-cyclonic eddies, while the weaker Viyaru (April 2013, Cyclonic Storm) did not interact with the WBC. A quantitative model linking the available along-track heat potential to cyclone’s intensity is developed to understand the impact of the WBC on cyclone intensification. The influence of the warming WBC and associated anti-cyclonic eddies will likely result in much stronger springtime TCs becoming relatively common in the future.


2020 ◽  
Vol 50 (12) ◽  
pp. 3513-3528
Author(s):  
Bijan Kumar Das ◽  
T. S. Anandh ◽  
J. Kuttippurath ◽  
Arun Chakraborty

AbstractThe East India Coastal Current (EICC), the western boundary current (WBC) in the Bay of Bengal (BOB), is continuous and well directed during pre- and postmonsoon season but is discontinuous during summer monsoon season (June–September). This study examines the individual and combined effects of river discharge and tidal forcing on the EICC discontinuity using high-resolution (1/12°) Regional Ocean Modeling System simulations. Four climatological experiments, a control simulation with normal boundary conditions and three other sensitivity simulations with the same boundary conditions but with river input, tidal forcing, and both together, are conducted. The analysis shows that, during summer monsoon, the southward reversal of EICC from head bay is enhanced with the river input while the tide forcing strengthens the northward EICC from north of Sri Lanka. High horizontal-salinity-gradient flow in the stratified upper ocean caused by the river discharge increases the surface currents. High vertical mixing in tide forcing suppresses the surface features. The strong horizontal diffusivity due to river discharge promotes the eddy genesis and propagation throughout the western BOB. Conversely, tidal oscillation contributes high turbulent buoyancy, which makes the upper ocean relatively unstable, and the discontinuity remains confined to the western boundary. The combined-forcing simulation indicates the dominance of river discharge in the upper layers with suppressed surface features due to tides, which intensify the discontinuity at subsurface. Therefore, the results of this numerical study suggest that the river input and tidal forcing both play important and complementary roles in maintaining the realistic summertime discontinuity in the BOB.


Sign in / Sign up

Export Citation Format

Share Document