scholarly journals Review of “Influence of Estuarine Tidal Mixing on Structure and Spatial Scales of Large River Plumes” by Osadchiev et al.

2020 ◽  
Author(s):  
Anonymous
2019 ◽  
Author(s):  
Alexander Osadchiev ◽  
Sergey Shchuka ◽  
Eduard Spivak ◽  
Maria Pisareva ◽  
Igor Semiletov

Abstract. The Yenisei and Khatanga rivers are among the largest estuarine rivers that inflow to the Arctic Ocean. Discharge of the Yenisei River is one order of magnitude larger than that of the Khatanga River. However, spatial scales of buoyant plumes formed by freshwater runoffs from the Yenisei and Khatanga gulfs are similar. This feature is caused by different tidal forcing in these estuaries, which have similar sizes, climate conditions, and geomorphology. The Khatanga discharge exhibits strong tidal forcing that causes formation of a diluted bottom-advected plume in the Khatanga Gulf. This anomalously deep and weakly-stratified plume has a small freshwater fraction and, therefore, occupies a large area on the shelf. The Yenisei Gulf, on the other hand, is a salt-wedge estuary that receives a large freshwater discharge and is less affected by tidal mixing due to low tidal velocities. As a result, the low-salinity and strongly-stratified Yenisei plume has a large freshwater fraction and its horizontal size is relatively small. The obtained results show that estuarine tidal mixing determines freshwater fraction in these river plumes, which governs their depth and area after they spread from estuaries to coastal sea. Therefore, influence of estuarine mixing on spatial scales of a large river plume can be of the same importance as the roles of river discharge rate and wind forcing. In particular, rivers with similar discharge rates can form plumes with significantly different areas, while plumes with similar areas can be formed by rivers with significantly different discharge rates.


Ocean Science ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. 781-798 ◽  
Author(s):  
Alexander Osadchiev ◽  
Igor Medvedev ◽  
Sergey Shchuka ◽  
Mikhail Kulikov ◽  
Eduard Spivak ◽  
...  

Abstract. The Yenisei and Khatanga rivers are among the largest estuarine rivers that inflow to the Arctic Ocean. Discharge of the Yenisei River is 1 order of magnitude larger than that of the Khatanga River. However, spatial scales of buoyant plumes formed by freshwater runoff from the Yenisei and Khatanga gulfs are similar. This feature is caused by different tidal forcing in these estuaries, which have similar sizes, climate conditions, and geomorphology. The Khatanga discharge experiences strong tidal forcing that causes formation of a diluted bottom-advected plume in the Khatanga Gulf. This deep and weakly stratified plume has a small freshwater fraction and therefore occupies a large area on the shelf. The Yenisei Gulf, on the other hand, is a salt-wedge estuary that receives a large freshwater discharge and is less affected by tidal mixing due to low tidal velocities. As a result, the low-salinity and strongly stratified Yenisei plume has a large freshwater fraction and its horizontal size is relatively small. The results show that estuarine tidal mixing determines freshwater fraction in these river plumes, which governs their depth and area after they spread from estuaries to coastal sea. Therefore, the influence of estuarine mixing on spatial scales of a large river plume can be of the same importance as the roles of river discharge rate and wind forcing. In particular, plumes with similar areas can be formed by rivers with significantly different discharge rates, as illustrated by the Yenisei and Khatanga plumes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Mendes ◽  
J. C. B. da Silva ◽  
J. M. Magalhaes ◽  
B. St-Denis ◽  
D. Bourgault ◽  
...  

AbstractInternal waves (IWs) in the ocean span across a wide range of time and spatial scales and are now acknowledged as important sources of turbulence and mixing, with the largest observations having 200 m in amplitude and vertical velocities close to 0.5 m s−1. Their origin is mostly tidal, but an increasing number of non-tidal generation mechanisms have also been observed. For instance, river plumes provide horizontally propagating density fronts, which were observed to generate IWs when transitioning from supercritical to subcritical flow. In this study, satellite imagery and autonomous underwater measurements are combined with numerical modeling to investigate IW generation from an initial subcritical density front originating at the Douro River plume (western Iberian coast). These unprecedented results may have important implications in near-shore dynamics since that suggest that rivers of moderate flow may play an important role in IW generation between fresh riverine and coastal waters.


2018 ◽  
Vol 10 (8) ◽  
pp. 2876 ◽  
Author(s):  
Siddhartha Verma ◽  
Alena Bartosova ◽  
Momcilo Markus ◽  
Richard Cooke ◽  
Myoung-Jin Um ◽  
...  

This study analyzes the role of large river flow events in annual loads, for three constituents and for up to 32 years of daily data at multiple watersheds with different land-uses. Prior studies were mainly based on simple descriptive statistics, such as the percentage of nutrient loadings transported during several of the largest river flows, while this study uses log-regression and analysis of covariance (ANCOVA) to describe and quantify the relationships between large flow events and nutrient loadings. Regression relationships were developed to predict total annual loads based on loads exported by the largest events in a year for nitrate plus nitrite nitrogen (NO3-N + NO2-N, indicated as total oxidized nitrogen; TON), total phosphorus (TP), and suspended solids (SS) for eight watersheds in the Lake Erie and Ohio River basins. The median prediction errors for annual TON, TP, and SS loads from the top five load events for spatially aggregated watersheds were 13.2%, 18.6%, and 13.4%, respectively, which improve further on refining the spatial scales. ANCOVA suggests that the relationships between annual loads and large load events are regionally consistent. The findings outline the dominant role of large hydroclimatic events, and can help to improve the design of pollutant monitoring and agricultural conservation programs.


Ecohydrology ◽  
2021 ◽  
Author(s):  
Xiao Shu ◽  
Weibo Wang ◽  
Mingyong Zhu ◽  
Jilei Xu ◽  
Xiang Tan ◽  
...  

2014 ◽  
Vol 281 (1778) ◽  
pp. 20133003 ◽  
Author(s):  
Angela L. Strecker ◽  
Julian D. Olden

Despite long-standing interest of terrestrial ecologists, freshwater ecosystems are a fertile, yet unappreciated, testing ground for applying community phylogenetics to uncover mechanisms of species assembly. We quantify phylogenetic clustering and overdispersion of native and non-native fishes of a large river basin in the American Southwest to test for the mechanisms (environmental filtering versus competitive exclusion) and spatial scales influencing community structure. Contrary to expectations, non-native species were phylogenetically clustered and related to natural environmental conditions, whereas native species were not phylogenetically structured, likely reflecting human-related changes to the basin. The species that are most invasive (in terms of ecological impacts) tended to be the most phylogenetically divergent from natives across watersheds, but not within watersheds, supporting the hypothesis that Darwin's naturalization conundrum is driven by the spatial scale. Phylogenetic distinctiveness may facilitate non-native establishment at regional scales, but environmental filtering restricts local membership to closely related species with physiological tolerances for current environments. By contrast, native species may have been phylogenetically clustered in historical times, but species loss from contemporary populations by anthropogenic activities has likely shaped the phylogenetic signal. Our study implies that fundamental mechanisms of community assembly have changed, with fundamental consequences for the biogeography of both native and non-native species.


Author(s):  
Jason Augspurger ◽  
Matt Jarvis ◽  
Graham Wallis ◽  
Tania King ◽  
Travis Ingram ◽  
...  

Processes responsible for population structuring across spatial and temporal scales represent key components in understanding speciation and evolution. We use a hierarchical approach to investigate the degree and mechanisms of structuring in landlocked and diadromous populations of the facultatively amphidromous fish Galaxias brevipinnis across various temporal and spatial scales in southern New Zealand. To determine long-term structuring, multiple lakes and coastal sites were compared genetically. Short-term structuring was assessed using otolith microchemistry for a subset of sites, and behavioural mechanisms driving population structuring were assessed via larval distributions. Genetic data show that lakes foster divergence of lake-developing populations from each other and from coastal stream populations, whereas there is relatively little structuring within coast or lake populations. However, otolith analyses indicate that on a shorter time scale, most larvae do not disperse, i.e. recruitment is local. Thus, lake and coastal populations show a distinct meta-population structure based on catchment, in contrast to the prevailing assumption of widespread dispersal, with implications for management. Most larvae were distributed in river plumes, suggesting that a simple larval behavioural mechanism, e.g. positive rheotaxis, may result in larval retention within catchments and lakes. However, not all larvae were retained in plumes, creating opportunities for genetic exchange within-lake or among coastal sites. Genetic divergence of lake populations as a consequence of landscape and behaviour provides an insight into the potential of G. brevipinnis to diversify and speciate, when landscape and circumstances align, and also has implications for the management of this and other facultatively amphidromous species.


2016 ◽  
Vol 67 (12) ◽  
pp. 1844 ◽  
Author(s):  
Adrian Kitchingman ◽  
Zeb Tonkin ◽  
Renae M. Ayres ◽  
Jarod Lyon ◽  
Justin C. Stout ◽  
...  

Past waterway management practices worldwide involved extensive removal of instream woody habitat (IWH) and riparian vegetation. The importance of instream woody habitat for healthy aquatic ecosystems has now been recognised, with management approaches reversed to reintroduce instream woody habitat and replant riverbanks. Knowledge of natural or pre-disturbance IWH loads is useful to guide such restoration programs; however, such datasets are often unavailable. In this study, natural IWH loads were mapped along 105km of undisturbed rivers in south-eastern Australia. This field dataset was modelled, using boosted regression trees, against geomorphic, environmental and climatic variables to predict natural IWH loads in rivers across Victoria. Mapped natural IWH loads averaged 0.029m3m–2 (±0.005), ranging from 0.083 to 0.002m3m–2. Natural IWH volumes were predicted to range from 0 to 0.102m3m–2. Distinct IWH loading trends were noticeable over larger spatial scales. Eastern Victoria showed relatively lower natural IWH loads than did western Victoria. Because many stream restoration efforts do not have a quantifiable knowledge of natural IWH load, the results of the present study provide some guidance. The predicted IWH loadings are a useful first step in identifying broad areas for further investigation and a natural condition base for current IWH condition modelling.


2012 ◽  
Vol 4 (2) ◽  
pp. 179-185 ◽  
Author(s):  
Chen-Tung Arthur Chen ◽  
Ting-Hsuan Huang ◽  
Yu-Han Fu ◽  
Yan Bai ◽  
Xianqiang He

Sign in / Sign up

Export Citation Format

Share Document